These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16037220)

  • 41. Strecker-type degradation produced by the lipid oxidation products 4,5-epoxy-2-alkenals.
    Hidalgo FJ; Zamora R
    J Agric Food Chem; 2004 Nov; 52(23):7126-31. PubMed ID: 15537327
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation of furan and methylfuran by maillard-type reactions in model systems and food.
    Limacher A; Kerler J; Davidek T; Schmalzried F; Blank I
    J Agric Food Chem; 2008 May; 56(10):3639-47. PubMed ID: 18439018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel approaches to the analysis of the Maillard reaction of proteins.
    Fayle SE; Healy JP; Brown PA; Reid EA; Gerrard JA; Ames JM
    Electrophoresis; 2001 May; 22(8):1518-25. PubMed ID: 11386664
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Site-specific formation of Maillard, oxidation, and condensation products from whey proteins during reaction with lactose.
    Meltretter J; Seeber S; Humeny A; Becker CM; Pischetsrieder M
    J Agric Food Chem; 2007 Jul; 55(15):6096-103. PubMed ID: 17590008
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics of formation of three indicators of the maillard reaction in model cookies: influence of baking temperature and type of sugar.
    Charissou A; Ait-Ameur L; Birlouez-Aragon I
    J Agric Food Chem; 2007 May; 55(11):4532-9. PubMed ID: 17469839
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Taste-active maillard reaction products: the "tasty" world of nonvolatile maillard reaction products.
    Hofmann T
    Ann N Y Acad Sci; 2005 Jun; 1043():20-9. PubMed ID: 16037218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. alpha-Dicarbonyl compounds formed by nonenzymatic browning during the dry heating of caseinate and lactose.
    Ge Pan G; Oliver CM; Melton LD
    J Agric Food Chem; 2006 Sep; 54(18):6852-7. PubMed ID: 16939349
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of characterization method for nanoparticles in roadside atmosphere by thermal desorption-gas chromatography/mass spectrometry using a pyrolyzer.
    Fushimi A; Tanabe K; Hasegawa S; Kobayashi S
    Sci Total Environ; 2007 Nov; 386(1-3):83-92. PubMed ID: 17590418
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The carbon module labeling (CAMOLA) technique: a useful tool for identifying transient intermediates in the formation of maillard-type target molecules.
    Schieberle P
    Ann N Y Acad Sci; 2005 Jun; 1043():236-48. PubMed ID: 16037244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dicarbonyl intermediates in the maillard reaction.
    Thornalley PJ
    Ann N Y Acad Sci; 2005 Jun; 1043():111-7. PubMed ID: 16037229
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of flavour compounds in the Maillard reaction.
    van Boekel MA
    Biotechnol Adv; 2006; 24(2):230-3. PubMed ID: 16386869
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An evaluation of microwave-assisted derivatization procedures using hyphenated mass spectrometric techniques.
    Damm M; Rechberger G; Kollroser M; Kappe CO
    J Chromatogr A; 2009 Jul; 1216(31):5875-81. PubMed ID: 19555958
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Construction of an automated gas chromatography/mass spectrometry system for the analysis of ambient volatile organic compounds with on-line internal standard calibration.
    Su YC; Chang CC; Wang JL
    J Chromatogr A; 2008 Aug; 1201(2):134-40. PubMed ID: 18405905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acrylamide and pyrazine formation in model systems containing asparagine.
    Koutsidis G; De la Fuente A; Dimitriou C; Kakoulli A; Wedzicha BL; Mottram DS
    J Agric Food Chem; 2008 Aug; 56(15):6105-12. PubMed ID: 18624441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of thermal processing conditions on acrylamide generation and browning in a potato model system.
    Amrein TM; Limacher A; Conde-Petit B; Amado R; Escher F
    J Agric Food Chem; 2006 Aug; 54(16):5910-6. PubMed ID: 16881694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Model studies on the pattern of volatiles generated in mixtures of amino acids, lipid-oxidation-derived aldehydes, and glucose.
    Adams A; Kitryté V; Venskutonis R; De Kimpe N
    J Agric Food Chem; 2011 Feb; 59(4):1449-56. PubMed ID: 21265545
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence spectroscopy: a rapid tool for analyzing dairy products.
    Andersen CM; Mortensen G
    J Agric Food Chem; 2008 Feb; 56(3):720-9. PubMed ID: 18173241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovery of Amadori-Type Conjugates in a Peptide Maillard Reaction and Their Corresponding Influence on the Formation of Pyrazines.
    Zou T; Liu J; Song H; Liu Y
    J Food Sci; 2018 Jun; 83(6):1588-1595. PubMed ID: 29745978
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of phosphate and carboxylate ions in maillard browning.
    Rizzi GP
    J Agric Food Chem; 2004 Feb; 52(4):953-7. PubMed ID: 14969556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isotope labeling studies on the origin of 3,4-hexanedione and 1,2-butanedione in an alanine/glucose model system.
    Chu FL; Yaylayan VA
    J Agric Food Chem; 2009 Oct; 57(20):9740-6. PubMed ID: 19778056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.