These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16037220)

  • 61. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation.
    Yuan Q; Zhu X; Sayre LM
    Chem Res Toxicol; 2007 Jan; 20(1):129-39. PubMed ID: 17226935
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Maillard reaction indicators in diets usually consumed by adolescent population.
    Delgado-Andrade C; Seiquer I; Navarro MP; Morales FJ
    Mol Nutr Food Res; 2007 Mar; 51(3):341-51. PubMed ID: 17309116
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Addition of oxidizing or reducing agents to the reaction medium influences amino acid conversion to aroma compounds by Lactococcus lactis.
    Kieronczyk A; Cachon R; Feron G; Yvon M
    J Appl Microbiol; 2006 Nov; 101(5):1114-22. PubMed ID: 17040235
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sugar fragmentation in the maillard reaction cascade: isotope labeling studies on the formation of acetic acid by a hydrolytic beta-dicarbonyl cleavage mechanism.
    Davídek T; Devaud S; Robert F; Blank I
    J Agric Food Chem; 2006 Sep; 54(18):6667-76. PubMed ID: 16939325
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The kinetics of thermal generation of flavour.
    Parker JK
    J Sci Food Agric; 2013 Jan; 93(2):197-208. PubMed ID: 23184881
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Contribution of lipid oxidation products to acrylamide formation in model systems.
    Zamora R; Hidalgo FJ
    J Agric Food Chem; 2008 Aug; 56(15):6075-80. PubMed ID: 18624449
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Influence of Free Amino Acids, Oligopeptides, and Polypeptides on the Formation of Pyrazines in Maillard Model Systems.
    Scalone GL; Cucu T; De Kimpe N; De Meulenaer B
    J Agric Food Chem; 2015 Jun; 63(22):5364-72. PubMed ID: 25971942
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Study of Burseraceae resins used in binding media and varnishes from artworks by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry.
    De la Cruz-Cañizares J; Doménech-Carbó MT; Gimeno-Adelantado JV; Mateo-Castro R; Bosch-Reig F
    J Chromatogr A; 2005 Nov; 1093(1-2):177-94. PubMed ID: 16233883
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of 5-hydroxy-3-mercapto-2-pentanone in the maillard reaction of thiamine, cysteine, and xylose.
    Cerny C; Guntz-Dubini R
    J Agric Food Chem; 2008 Nov; 56(22):10679-82. PubMed ID: 18983164
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine.
    Wirth DD; Baertschi SW; Johnson RA; Maple SR; Miller MS; Hallenbeck DK; Gregg SM
    J Pharm Sci; 1998 Jan; 87(1):31-9. PubMed ID: 9452965
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrochemical study of the Maillard reaction.
    Rizzi GP
    J Agric Food Chem; 2003 Mar; 51(6):1728-31. PubMed ID: 12617613
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Food anoxia and the formation of either flavor or toxic compounds by amino acid degradation initiated by oxidized lipids.
    Hidalgo FJ; Zamora R
    Ann N Y Acad Sci; 2008 Apr; 1126():25-9. PubMed ID: 18448792
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Investigation of the lactosylation of whey proteins by liquid chromatography-mass spectrometry.
    Czerwenka C; Maier I; Pittner F; Lindner W
    J Agric Food Chem; 2006 Nov; 54(23):8874-82. PubMed ID: 17090137
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Engineering and biotechnological aspects for the manufacturing of high quality fried potato products.
    Reimerdes EH; Franke K
    Biotechnol J; 2006 Apr; 1(4):413-9. PubMed ID: 16892269
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Novel insights into the maillard catalyzed degradation of maltose.
    Smuda M; Glomb MA
    J Agric Food Chem; 2011 Dec; 59(24):13254-64. PubMed ID: 22122608
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods.
    Silván JM; van de Lagemaat J; Olano A; Del Castillo MD
    J Pharm Biomed Anal; 2006 Aug; 41(5):1543-51. PubMed ID: 16824722
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Structure-reactivity relationships of flavan-3-ols on product generation in aqueous glucose/glycine model systems.
    Noda Y; Peterson DG
    J Agric Food Chem; 2007 May; 55(9):3686-91. PubMed ID: 17394338
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Epicatechin carbonyl-trapping reactions in aqueous maillard systems: Identification and structural elucidation.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2006 Sep; 54(19):7311-8. PubMed ID: 16968099
    [TBL] [Abstract][Full Text] [Related]  

  • 79. alpha-Dicarbonyl compounds--key intermediates for the formation of carbohydrate-based melanoidins.
    Kroh LW; Fiedler T; Wagner J
    Ann N Y Acad Sci; 2008 Apr; 1126():210-5. PubMed ID: 18448818
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pathways of the Maillard reaction under physiological conditions.
    Henning C; Glomb MA
    Glycoconj J; 2016 Aug; 33(4):499-512. PubMed ID: 27291759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.