These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16037236)

  • 21. Recovery of lens optics and epithelial enzymes after ultraviolet A radiation.
    Dovrat A; Weinreb O
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2417-24. PubMed ID: 7591631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of active oxygen species from advanced glycation end-products (AGE) under ultraviolet light A (UVA) irradiation.
    Masaki H; Okano Y; Sakurai H
    Biochem Biophys Res Commun; 1997 Jun; 235(2):306-10. PubMed ID: 9199187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term UVA eye irradiation causes decreased learning ability in mice.
    Hiramoto K; Kasahara E
    Photodermatol Photoimmunol Photomed; 2016 May; 32(3):129-35. PubMed ID: 26662865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative effect of UVA and UVB on cultured rabbit lens.
    Hightower K; McCready J
    Photochem Photobiol; 1993 Dec; 58(6):827-30. PubMed ID: 8310004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycated proteins can enhance photooxidative stress in aged and diabetic lenses.
    Argirova MD; Breipohl W
    Free Radic Res; 2002 Dec; 36(12):1251-9. PubMed ID: 12607815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced glycation end products in human cancer tissues: detection of Nepsilon-(carboxymethyl)lysine and argpyrimidine.
    van Heijst JW; Niessen HW; Hoekman K; Schalkwijk CG
    Ann N Y Acad Sci; 2005 Jun; 1043():725-33. PubMed ID: 16037299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins.
    Wondrak GT; Roberts MJ; Jacobson MK; Jacobson EL
    J Invest Dermatol; 2002 Aug; 119(2):489-98. PubMed ID: 12190875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. UVA irradiation of human lens proteins produces residual oxidation of ascorbic acid even in the presence of high levels of glutathione.
    Ortwerth BJ; Coots A; James HL; Linetsky M
    Arch Biochem Biophys; 1998 Mar; 351(2):189-96. PubMed ID: 9515056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. UV B-irradiation enhances the racemization and isomerizaiton of aspartyl residues and production of Nε-carboxymethyl lysine (CML) in keratin of skin.
    Mori Y; Aki K; Kuge K; Tajima S; Yamanaka N; Kaji Y; Yamamoto N; Nagai R; Yoshii H; Fujii N; Watanabe M; Kinouchi T; Fujii N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3303-9. PubMed ID: 21636332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium.
    Reddy VN; Giblin FJ; Lin LR; Chakrapani B
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):344-50. PubMed ID: 9477992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UVA Light-mediated Ascorbate Oxidation in Human Lenses.
    Rakete S; Nagaraj RH
    Photochem Photobiol; 2017 Jul; 93(4):1091-1095. PubMed ID: 28084012
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of two different UVA doses on the rabbit cornea and lens.
    Cejka C; Pláteník J; Buchal R; Guryca V; Sirc J; Vejrazka M; Crkovská J; Ardan T; Michálek J; Brůnová B; Cejková J
    Photochem Photobiol; 2009; 85(3):794-800. PubMed ID: 19076313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The relative UV sensitizer activity of purified advanced glycation endproducts.
    Ortwerth BJ; Prabhakaram M; Nagaraj RH; Linetsky M
    Photochem Photobiol; 1997 Apr; 65(4):666-72. PubMed ID: 9114742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive analysis of maillard protein modifications in human lenses: effect of age and cataract.
    Smuda M; Henning C; Raghavan CT; Johar K; Vasavada AR; Nagaraj RH; Glomb MA
    Biochemistry; 2015 Apr; 54(15):2500-7. PubMed ID: 25849437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultraviolet radiation and cataract.
    Balasubramanian D
    J Ocul Pharmacol Ther; 2000 Jun; 16(3):285-97. PubMed ID: 10872925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impairment of eye lens cell physiology and optics by broadband ultraviolet A-ultraviolet B radiation.
    Oriowo OM; Cullen AP; Sivak JG
    Photochem Photobiol; 2002 Sep; 76(3):361-7. PubMed ID: 12403459
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lens UVA photobiology.
    Zigman S
    J Ocul Pharmacol Ther; 2000 Apr; 16(2):161-5. PubMed ID: 10803426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term lens organ culture system to determine age-related effects of UV irradiation on the eye lens.
    Azzam N; Dovrat A
    Exp Eye Res; 2004 Dec; 79(6):903-11. PubMed ID: 15642328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on the mechanism of the UVA light-dependent loss of glutathione reductase activity in human lenses.
    Linetsky M; Hill JM; Chemoganskiy VG; Hu F; Ortwerth BJ
    Invest Ophthalmol Vis Sci; 2003 Sep; 44(9):3920-6. PubMed ID: 12939310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light.
    Kessel L; Eskildsen L; Lundeman JH; Jensen OB; Larsen M
    BMC Ophthalmol; 2011 Dec; 11():41. PubMed ID: 22208285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.