BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16037964)

  • 1. Degradation of poly-L/DL-lactide versus TCP composite pins: a three-year animal study.
    Prokop A; Höfl A; Hellmich M; Jubel A; Andermahr J; Emil Rehm K; Hahn U
    J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):304-10. PubMed ID: 16037964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative radiological assessment of polylactide pins over 3 years in vivo.
    Prokop A; Jubel A; Hahn U; Dietershagen M; Bleidistel M; Peters C; Höfl A; Rehm KE
    Biomaterials; 2005 Jul; 26(19):4129-38. PubMed ID: 15664640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation behavior of composite pins made of tricalcium phosphate and poly(L,DL-lactide).
    Ignatius AA; Augat P; Claes LE
    J Biomater Sci Polym Ed; 2001; 12(2):185-94. PubMed ID: 11403235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft tissue reactions of different biodegradable polylactide implants.
    Prokop A; Jubel A; Helling HJ; Eibach T; Peters C; Baldus SE; Rehm KE
    Biomaterials; 2004 Jan; 25(2):259-67. PubMed ID: 14585713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical evaluation of novel ultrasound-activated bioresorbable pins for the treatment of osteochondral fractures compared to established methods.
    Kienast B; Mohsen H; Wendlandt R; Reimers N; Schulz AP; Heuer H; Gille J; Neumann H
    Biomed Tech (Berl); 2017 Aug; 62(4):365-373. PubMed ID: 27626763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positional stability of polylactide pins with various surface textures in sheep tibia.
    Mainil-Varlet P; Cordey J; Gogolewski S
    J Biomed Mater Res; 1997 Mar; 34(3):351-9. PubMed ID: 9086405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation.
    Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA
    Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation.
    Lin FH; Chen TM; Lin CP; Lee CJ
    Artif Organs; 1999 Feb; 23(2):186-94. PubMed ID: 10027889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite poly(lactide)/hydroxylapatite screws for fixation of osteochondral osteotomies. A morphometric, histologic and radiographic study in sheep.
    Lewandrowski KU; Bondre SP; Shea M; Untch CM; Hayes WC; Hile DD; Wise DL; Trantolo DJ
    J Biomater Sci Polym Ed; 2002; 13(11):1241-58. PubMed ID: 12518802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion and proliferation of human osteoblast-like cells on different biodegradable implant materials used for graft fixation in ACL-reconstruction.
    Bernstein A; Tecklenburg K; Südkamp P; Mayr HO
    Arch Orthop Trauma Surg; 2012 Nov; 132(11):1637-45. PubMed ID: 22864871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of particle size on the in vivo degradation of poly(d,l-lactide-co-glycolide)/α-tricalcium phosphate micro- and nanocomposites.
    Bennett SM; Arumugam M; Wilberforce S; Enea D; Rushton N; Zhang XC; Best SM; Cameron RE; Brooks RA
    Acta Biomater; 2016 Nov; 45():340-348. PubMed ID: 27567963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of poly(D,L)lactide implants with or without addition of calciumphosphates in vivo.
    Heidemann W; Jeschkeit S; Ruffieux K; Fischer JH; Wagner M; Krüger G; Wintermantel E; Gerlach KL
    Biomaterials; 2001 Sep; 22(17):2371-81. PubMed ID: 11511034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Healing of subcapital femoral osteotomies fixed with self-reinforced poly-L-lactide screws: an experimental long-term study in sheep.
    Jukkala-Partio K; Laitinen O; Vasenius J; Partio EK; Toivonen T; Tervahartiala P; Kinnunen J; Rokkanen P
    Arch Orthop Trauma Surg; 2002 Jul; 122(6):360-4. PubMed ID: 12136303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term degradation of a poly-lactide co-glycolide/β-tricalcium phosphate biocomposite interference screw.
    Barber FA; Dockery WD; Hrnack SA
    Arthroscopy; 2011 May; 27(5):637-43. PubMed ID: 21429700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [In vivo degradation and tissue compatibility of poly-L-lactide/beta-tricalcium phosphate composite rods for internal fixation of bone fractures].
    Li X; Zou J; Zhu G; Qi X; Pu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):81-6. PubMed ID: 17333897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo investigations on composites made of resorbable ceramics and poly(lactide) used as bone graft substitutes.
    Ignatius AA; Betz O; Augat P; Claes LE
    J Biomed Mater Res; 2001; 58(6):701-9. PubMed ID: 11745524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Term Degradation of Self-Reinforced Poly-Levo (96%)/Dextro (4%)-Lactide/β-Tricalcium Phosphate Biocomposite Interference Screws.
    Barber FA; Dockery WD
    Arthroscopy; 2016 Apr; 32(4):608-14. PubMed ID: 26549594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for biodegradation of composite materials made of polyesters and tricalcium phosphates.
    Pan J; Han X; Niu W; Cameron RE
    Biomaterials; 2011 Mar; 32(9):2248-55. PubMed ID: 21186057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-reinforcing biodegradable implant made of poly(ɛ-caprolactone)/calcium phosphate ceramic composite for craniomaxillofacial fracture fixation.
    Wu CC; Tsai YF; Hsu LH; Chen JP; Sumi S; Yang KC
    J Craniomaxillofac Surg; 2016 Sep; 44(9):1333-41. PubMed ID: 27527677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term in vivo degradation and bone reaction to various polylactides. 1. One-year results.
    Mainil-Varlet P; Rahn B; Gogolewski S
    Biomaterials; 1997 Feb; 18(3):257-66. PubMed ID: 9031728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.