BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1603808)

  • 1. Molecular dynamics of HIV-1 protease.
    Harte WE; Swaminathan S; Beveridge DL
    Proteins; 1992 Jul; 13(3):175-94. PubMed ID: 1603808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies of relaxation of a monomeric subunit of HIV-1 protease in water using molecular dynamics.
    Venable RM; Brooks BR; Carson FW
    Proteins; 1993 Apr; 15(4):374-84. PubMed ID: 8460108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA; Cukier RI
    Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG
    Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations.
    Lee VS; Nimmanpipug P; Aruksakunwong O; Promsri S; Sompornpisut P; Hannongbua S
    J Mol Graph Model; 2007 Sep; 26(2):558-70. PubMed ID: 17468026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of ligand-induced flap closing in HIV-1 protease approach X-ray resolution: establishing the role of bound water in the flap closing mechanism.
    Singh G; Senapati S
    Biochemistry; 2008 Oct; 47(40):10657-64. PubMed ID: 18785756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations.
    Wittayanarakul K; Aruksakunwong O; Sompornpisut P; Sanghiran-Lee V; Parasuk V; Pinitglang S; Hannongbua S
    J Chem Inf Model; 2005; 45(2):300-8. PubMed ID: 15807491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flap opening dynamics in HIV-1 protease explored with a coarse-grained model.
    Tozzini V; Trylska J; Chang CE; McCammon JA
    J Struct Biol; 2007 Mar; 157(3):606-15. PubMed ID: 17029846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation shell structure of cyclooctylpyranone in water solvent and its comparative structure, dynamics and dipole moment in HIV protease.
    Arul Murugan N; Chandra Jha P; Agren H
    Phys Chem Chem Phys; 2009 Aug; 11(30):6482-9. PubMed ID: 19809680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray structure and conformational dynamics of the HIV-1 protease in complex with the inhibitor SDZ283-910: agreement of time-resolved spectroscopy and molecular dynamics simulations.
    Ringhofer S; Kallen J; Dutzler R; Billich A; Visser AJ; Scholz D; Steinhauser O; Schreiber H; Auer M; Kungl AJ
    J Mol Biol; 1999 Mar; 286(4):1147-59. PubMed ID: 10047488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational and helicoidal analysis of the molecular dynamics of proteins: "curves," dials and windows for a 50 psec dynamic trajectory of BPTI.
    Swaminathan S; Ravishanker G; Beveridge DL; Lavery R; Etchebest C; Sklenar H
    Proteins; 1990; 8(2):179-93. PubMed ID: 2235996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative fluctuations of unliganded and substrate-bound HIV-1 protease: a structure-based analysis on a variety of conformations from crystallography and molecular dynamics simulations.
    Kurt N; Scott WR; Schiffer CA; Haliloglu T
    Proteins; 2003 May; 51(3):409-22. PubMed ID: 12696052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of HIV-1 protease monomer: Assembly of N-terminus and C-terminus into beta-sheet in water solution.
    Yan MC; Sha Y; Wang J; Xiong XQ; Ren JH; Cheng MS
    Proteins; 2008 Feb; 70(3):731-8. PubMed ID: 17729281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping hydration water molecules in the HIV-1 protease/DMP323 complex in solution by NMR spectroscopy.
    Wang YX; Freedberg DI; Grzesiek S; Torchia DA; Wingfield PT; Kaufman JD; Stahl SJ; Chang CH; Hodge CN
    Biochemistry; 1996 Oct; 35(39):12694-704. PubMed ID: 8841113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute free energies of binding of peptide analogs to the HIV-1 protease from molecular dynamics simulations.
    Bartels C; Widmer A; Ehrhardt C
    J Comput Chem; 2005 Sep; 26(12):1294-305. PubMed ID: 15981257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restrained molecular dynamics simulations of HIV-1 protease: the first step in validating a new target for drug design.
    Perryman AL; Lin JH; McCammon JA
    Biopolymers; 2006 Jun; 82(3):272-84. PubMed ID: 16508951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crucial roles of the subnanosecond local dynamics of the flap tips in the global conformational changes of HIV-1 protease.
    Li D; Ji B; Hwang K; Huang Y
    J Phys Chem B; 2010 Mar; 114(8):3060-9. PubMed ID: 20143801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V; Michielin O; Karplus M
    J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanism of aspartyl proteinase action. VII. Noncovalent complexes of HIV-1 aspartyl proteinase with substrate and substrate-like inhibitors].
    Popov ME; Kashparov IV; Rumsh LD; Popov EM
    Bioorg Khim; 1999 Dec; 25(12):911-22. PubMed ID: 10734551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.