BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1603813)

  • 1. Molecular modeling of the amphipathic helices of the plasma apolipoproteins.
    Brasseur R; Lins L; Vanloo B; Ruysschaert JM; Rosseneu M
    Proteins; 1992 Jul; 13(3):246-57. PubMed ID: 1603813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations.
    Brasseur R
    J Biol Chem; 1991 Aug; 266(24):16120-7. PubMed ID: 1714906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In search of new structural states of exchangeable apolipoproteins.
    Xicohtencatl-Cortes J; Castillo R; Mas-Oliva J
    Biochem Biophys Res Commun; 2004 Nov; 324(2):467-70. PubMed ID: 15474451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a new class of amphipathic helical peptides for the plasma apolipoproteins that promote cellular cholesterol efflux but do not activate LCAT.
    Labeur C; Lins L; Vanloo B; Baert J; Brasseur R; Rosseneu M
    Arterioscler Thromb Vasc Biol; 1997 Mar; 17(3):580-8. PubMed ID: 9102180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode of assembly of amphipathic helical segments in model high-density lipoproteins.
    Brasseur R; De Meutter J; Vanloo B; Goormaghtigh E; Ruysschaert JM; Rosseneu M
    Biochim Biophys Acta; 1990 Apr; 1043(3):245-52. PubMed ID: 2322570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes.
    Mishra VK; Palgunachari MN
    Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of buried polar residues in helix bundle stability and lipid binding of apolipophorin III: destabilization by threonine 31.
    Weers PM; Abdullahi WE; Cabrera JM; Hsu TC
    Biochemistry; 2005 Jun; 44(24):8810-6. PubMed ID: 15952787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural similarities in the repeat sequences of plasma apolipoproteins, A-I, A-IV, and E.
    Ponnuswamy PK; Selvaraj S
    Protein Seq Data Anal; 1992; 5(1):47-56. PubMed ID: 1492097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Helix-helix interactions in reconstituted high-density lipoproteins.
    Lins L; Brasseur R; De Pauw M; Van Biervliet JP; Ruysschaert JM; Rosseneu M; Vanloo B
    Biochim Biophys Acta; 1995 Aug; 1258(1):10-8. PubMed ID: 7654775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of genetic variation at the apo AI-CIII-AIV gene cluster in determining plasma apo AI levels in boys and girls.
    Xu CF; Angelico F; Del Ben M; Humphries S
    Genet Epidemiol; 1993; 10(2):113-22. PubMed ID: 8339925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic model peptides for apolipoproteins. I. Design and properties of synthetic model peptides for the amphipathic helices of the plasma apolipoproteins.
    Brasseur R; Vanloo B; Deleys R; Lins L; Labeur C; Taveirne J; Ruysschaert JM; Rosseneu M
    Biochim Biophys Acta; 1993 Sep; 1170(1):1-7. PubMed ID: 8399322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides.
    Epand RM; Shai Y; Segrest JP; Anantharamaiah GM
    Biopolymers; 1995; 37(5):319-38. PubMed ID: 7632881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of apo A-I high-density lipoproteins: a review.
    Titov VN
    Biochemistry (Mosc); 1997 Jan; 62(1):1-14. PubMed ID: 9113723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary structure and orientation of the amphipathic peptide GALA in lipid structures. An infrared-spectroscopic approach.
    Goormaghtigh E; De Meutter J; Szoka F; Cabiaux V; Parente RA; Ruysschaert JM
    Eur J Biochem; 1991 Jan; 195(2):421-9. PubMed ID: 1997324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic model peptides for apolipoproteins. II. Characterization of the discoidal complexes generated between phospholipids and synthetic model peptides for apolipoproteins.
    Corijn J; Deleys R; Labeur C; Vanloo B; Lins L; Brasseur R; Baert J; Ruysschaert JM; Rosseneu M
    Biochim Biophys Acta; 1993 Sep; 1170(1):8-16. PubMed ID: 8399330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of end group blockage on the properties of a class A amphipathic helical peptide.
    Venkatachalapathi YV; Phillips MC; Epand RM; Epand RF; Tytler EM; Segrest JP; Anantharamaiah GM
    Proteins; 1993 Apr; 15(4):349-59. PubMed ID: 8460106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2004 Oct; 43(41):13156-64. PubMed ID: 15476409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Packing interactions of Aib-containing helices: molecular modeling of parallel dimers of simple hydrophobic helices and of alamethicin.
    Breed J; Kerr ID; Sankararamakrishnan R; Sansom MS
    Biopolymers; 1995 Jun; 35(6):639-55. PubMed ID: 7766829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini.
    Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M
    Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.