These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 16038198)
81. Liquid chromatography electrospray tandem mass spectrometric and desorption electrospray ionization tandem mass spectrometric analysis of chemical warfare agents in office media typically collected during a forensic investigation. D'Agostino PA; Hancock JR; Chenier CL; Lepage CR J Chromatogr A; 2006 Mar; 1110(1-2):86-94. PubMed ID: 16480731 [TBL] [Abstract][Full Text] [Related]
82. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges. Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687 [TBL] [Abstract][Full Text] [Related]
83. Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water--First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds. Pekar H; Westerberg E; Bruno O; Lääne A; Persson KM; Sundström LF; Thim AM J Chromatogr A; 2016 Jan; 1429():265-76. PubMed ID: 26755412 [TBL] [Abstract][Full Text] [Related]
84. LC-MS analyses of microcystins in fish tissues overestimate toxin levels-critical comparison with LC-MS/MS. Kohoutek J; Adamovský O; Oravec M; Simek Z; Palíková M; Kopp R; Bláha L Anal Bioanal Chem; 2010 Oct; 398(3):1231-7. PubMed ID: 20535609 [TBL] [Abstract][Full Text] [Related]
85. Liquid chromatography-high resolution mass spectrometric methods for the surveillance monitoring of cyanotoxins in freshwaters. Bogialli S; Bortolini C; Di Gangi IM; Di Gregorio FN; Lucentini L; Favaro G; Pastore P Talanta; 2017 Aug; 170():322-330. PubMed ID: 28501176 [TBL] [Abstract][Full Text] [Related]
86. Toxic cyanobacteria and their toxins in standing waters of Kenya: implications for water resource use. Kotut K; Ballot A; Krienitz L J Water Health; 2006 Jun; 4(2):233-45. PubMed ID: 16813016 [TBL] [Abstract][Full Text] [Related]
87. Anatoxin-a and its metabolites in blue-green algae food supplements from Canada and Portugal. Rawn DF; Niedzwiadek B; Lau BP; Saker M J Food Prot; 2007 Mar; 70(3):776-9. PubMed ID: 17388076 [TBL] [Abstract][Full Text] [Related]
88. Facile detection of anatoxin-a in algal material by thin-layer chromatography with Fast Black K salt. Ojanperä I; Vuori E; Himberg K; Waris M; Niinivaara K Analyst; 1991 Mar; 116(3):265-7. PubMed ID: 1906687 [TBL] [Abstract][Full Text] [Related]
89. Detection of anatoxin-a and three analogs in Anabaena spp. cultures: new fluorescence polarization assay and toxin profile by LC-MS/MS. Sanchez JA; Otero P; Alfonso A; Ramos V; Vasconcelos V; Aráoz R; Molgó J; Vieytes MR; Botana LM Toxins (Basel); 2014 Jan; 6(2):402-15. PubMed ID: 24469431 [TBL] [Abstract][Full Text] [Related]
90. Toxicity, transfer and depuration of anatoxin-a (cyanobacterial neurotoxin) in medaka fish exposed by single-dose gavage. Colas S; Duval C; Marie B Aquat Toxicol; 2020 May; 222():105422. PubMed ID: 32112996 [TBL] [Abstract][Full Text] [Related]
91. Detection of Anatoxins in Human Urine by Liquid Chromatography Triple Quadrupole Mass Spectrometry and ELISA. Cunningham BR; Lagon SR; Bragg WA; Hill D; Hamelin EI Toxins (Basel); 2024 Mar; 16(3):. PubMed ID: 38535795 [TBL] [Abstract][Full Text] [Related]
92. Analytical Methods for Anatoxin-a Determination: A Review. Plata-Calzado C; Prieto AI; Cameán AM; Jos A Toxins (Basel); 2024 Apr; 16(4):. PubMed ID: 38668623 [TBL] [Abstract][Full Text] [Related]
93. Geographical segregation of the neurotoxin-producing cyanobacterium Anabaena circinalis. Beltran EC; Neilan BA Appl Environ Microbiol; 2000 Oct; 66(10):4468-74. PubMed ID: 11010900 [TBL] [Abstract][Full Text] [Related]
95. Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. Colas S; Marie B; Lance E; Quiblier C; Tricoire-Leignel H; Mattei C Environ Res; 2021 Feb; 193():110590. PubMed ID: 33307089 [TBL] [Abstract][Full Text] [Related]
96. Early Detection of Cyanobacterial Blooms and Associated Cyanotoxins using Fast Detection Strategy. Teta R; Esposito G; De Sterlich C; Lega M; Costantino V J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720127 [TBL] [Abstract][Full Text] [Related]
97. Liquid chromatography-high-resolution tandem mass spectrometry of anatoxins, including new conjugates and reduction products. Beach DG; Zamlynny L; MacArthur M; Miles CO Anal Bioanal Chem; 2023 Sep; 415(22):5281-5296. PubMed ID: 37507466 [TBL] [Abstract][Full Text] [Related]
98. High resolution LC-MS(n) fragmentation pattern of palytoxin as template to gain new insights into ovatoxin-a structure. The key role of calcium in MS behavior of palytoxins. Ciminiello P; Dell'Aversano C; Dello Iacovo E; Fattorusso E; Forino M; Grauso L; Tartaglione L J Am Soc Mass Spectrom; 2012 May; 23(5):952-63. PubMed ID: 22354684 [TBL] [Abstract][Full Text] [Related]
99. Fragmentation mass spectra dataset of linear cyanopeptides - microginins. Zervou SK; Kaloudis T; Hiskia A; Mazur-Marzec H Data Brief; 2020 Aug; 31():105825. PubMed ID: 32671141 [TBL] [Abstract][Full Text] [Related]
100. Rapid detection of asperphenamate in a hay batch associated with constipation and deaths in dairy cattle. The application of DART-HRMS to veterinary forensic toxicology. Pozzato N; Piva E; Pallante I; Bombana D; Stella R; Zanardello C; Tata A; Piro R Toxicon; 2020 Nov; 187():122-128. PubMed ID: 32891666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]