BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 16038302)

  • 1. Modeling of overloaded gradient elution of nociceptin/orphanin FQ in reversed-phase liquid chromatography.
    Marchetti N; Dondi F; Felinger A; Guerrini R; Salvadori S; Cavazzini A
    J Chromatogr A; 2005 Jun; 1079(1-2):162-72. PubMed ID: 16038302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the nonlinear behavior of a bioactive peptide in reversed-phase gradient elution chromatography.
    De Luca C; Felletti S; Macis M; Cabri W; Lievore G; Chenet T; Pasti L; Morbidelli M; Cavazzini A; Catani M; Ricci A
    J Chromatogr A; 2020 Apr; 1616():460789. PubMed ID: 31874699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of a protein band profile in preparative reversed-phase gradient elution chromatography.
    El Fallah MZ; Guiochon G
    Biotechnol Bioeng; 1992 Apr; 39(8):877-85. PubMed ID: 18601022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography.
    Åsberg D; Langborg Weinmann A; Leek T; Lewis RJ; Klarqvist M; Leśko M; Kaczmarski K; Samuelsson J; Fornstedt T
    J Chromatogr A; 2017 May; 1496():80-91. PubMed ID: 28363419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic interpretation of the drift and noise of gradient baselines in reversed-phase liquid chromatography using mobile phase additives.
    Gritti F
    J Chromatogr A; 2020 Dec; 1633():461605. PubMed ID: 33128973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast estimation of adsorption isotherm parameters in gradient elution preparative liquid chromatography II: the competitive case.
    Åsberg D; Leśko M; Enmark M; Samuelsson J; Kaczmarski K; Fornstedt T
    J Chromatogr A; 2013 Nov; 1314():70-6. PubMed ID: 24050597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast estimation of adsorption isotherm parameters in gradient elution preparative liquid chromatography. I: the single component case.
    Åsberg D; Leśko M; Enmark M; Samuelsson J; Kaczmarski K; Fornstedt T
    J Chromatogr A; 2013 Jul; 1299():64-70. PubMed ID: 23769206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the mobile phase composition on the adsorption behavior of tryptophan in reversed-phase liquid chromatography.
    Ahmad T; Guiochon G
    J Chromatogr A; 2006 May; 1114(1):111-22. PubMed ID: 16530206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overloaded gradient elution chromatography on heterogeneous adsorbents in reversed-phase liquid chromatography.
    Gritti F; Felinger A; Guiochon G
    J Chromatogr A; 2003 Oct; 1017(1-2):45-61. PubMed ID: 14584690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact peak compression factor in linear gradient elution. I. Theory.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band splitting in overloaded isocratic elution chromatography III. Modeling of adsorbate-adsorbate interactions by a two-component extension of a BET kinetic isotherm model.
    Gritti F; Guiochon G
    J Chromatogr A; 2004 Feb; 1028(1):121-37. PubMed ID: 14969286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the recovery yield and of the production rate in overloaded gradient-elution reversed-phase chromatography.
    Jandera P; Komers D; Guiochon G
    J Chromatogr A; 1998 Feb; 796(1):115-27. PubMed ID: 9513286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention of ionizable compounds in reversed-phase liquid chromatography. Effect of the ionic strength of the mobile phase and the nature of the salts used on the overloading behavior.
    Gritti F; Guiochon G
    Anal Chem; 2004 Aug; 76(16):4779-89. PubMed ID: 15307789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Mar; 1615():460757. PubMed ID: 31831147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of band profiles of mixtures of bradykinin and kallidin from data acquired by competitive frontal analysis.
    Zhou D; Liu X; Kaczmarski K; Felinger A; Guiochon G
    Biotechnol Prog; 2003; 19(3):945-54. PubMed ID: 12790661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model free method for estimation of complicated adsorption isotherms in liquid chromatography.
    Forssén P; Fornstedt T
    J Chromatogr A; 2015 Aug; 1409():108-15. PubMed ID: 26209195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band splitting in overloaded isocratic elution chromatography II. New competitive adsorption isotherms.
    Gritti F; Guiochon G
    J Chromatogr A; 2003 Aug; 1008(1):23-41. PubMed ID: 12943248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.
    Balkatzopoulou P; Fasoula S; Gika H; Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2015 May; 1396():72-6. PubMed ID: 25900744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of overloaded concentration profiles under ultra-high-pressure liquid chromatographic conditions.
    Leśko M; Kaczmarski K; Samuelsson J; Fornstedt T
    J Chromatogr A; 2024 Mar; 1718():464704. PubMed ID: 38330725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.