BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16038317)

  • 41. Polydispersity of liposome preparations as a likely source of peak width in capillary zone electrophoresis.
    Radko SP; Stastna M; Chrambach A
    J Chromatogr B Biomed Sci Appl; 2001 Sep; 761(1):69-75. PubMed ID: 11585133
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental modelling of drug membrane permeability by capillary electrophoresis using liposomes, micelles and microemulsions.
    Ornskov E; Gottfries J; Erickson M; Folestad S
    J Pharm Pharmacol; 2005 Apr; 57(4):435-42. PubMed ID: 15831203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective amphipathic nature of chlorpromazine binding to plasma membrane bilayers.
    Chen JY; Brunauer LS; Chu FC; Helsel CM; Gedde MM; Huestis WH
    Biochim Biophys Acta; 2003 Sep; 1616(1):95-105. PubMed ID: 14507423
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phosphatidylcholine-fatty acid membranes. I. Effects of protonation, salt concentration, temperature and chain-length on the colloidal and phase properties of mixed vesicles, bilayers and nonlamellar structures.
    Cevc G; Seddon JM; Hartung R; Eggert W
    Biochim Biophys Acta; 1988 May; 940(2):219-40. PubMed ID: 2835979
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of vesicle electrokinetic chromatography as an in vitro assay for the estimation of intestinal permeability of pharmaceutical drug candidates.
    Pascoe RJ; Masucci JA; Foley JP
    Electrophoresis; 2006 Feb; 27(4):793-804. PubMed ID: 16411277
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of protein charge in protein-lipid interactions. pH-dependent changes of the electrophoretic mobility of liposomes through adsorption of water-soluble, globular proteins.
    Bergers JJ; Vingerhoeds MH; van Bloois L; Herron JN; Janssen LH; Fischer MJ; Crommelin DJ
    Biochemistry; 1993 May; 32(17):4641-9. PubMed ID: 8485142
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A liposomal fluorescence assay to study permeation kinetics of drug-like weak bases across the lipid bilayer.
    Eyer K; Paech F; Schuler F; Kuhn P; Kissner R; Belli S; Dittrich PS; Krämer SD
    J Control Release; 2014 Jan; 173():102-9. PubMed ID: 24211703
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interactions of amiodarone with model membranes and amiodarone-photoinduced peroxidation of lipids.
    Sautereau AM; Tournaire C; Suares M; Tocanne JF; Paillous N
    Biochem Pharmacol; 1992 Jun; 43(12):2559-66. PubMed ID: 1632814
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Size-dependent electrophoretic migration and separation of liposomes by capillary zone electrophoresis in electrolyte solutions of various ionic strengths.
    Radko SP; Stastna M; Chrambach A
    Anal Chem; 2000 Dec; 72(24):5955-60. PubMed ID: 11140762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inorganic cadmium affects the fluidity and size of phospholipid based liposomes.
    Kerek EM; Prenner EJ
    Biochim Biophys Acta; 2016 Dec; 1858(12):3169-3181. PubMed ID: 27736635
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physicochemical characterization of a PEGylated liposomal drug formulation using capillary electrophoresis.
    Franzen U; Vermehren C; Jensen H; Østergaard J
    Electrophoresis; 2011 Mar; 32(6-7):738-48. PubMed ID: 21365657
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent innovation in capillary electrokinetic chromatography with replaceable charged pseudostationary phases or additives.
    Maichel B; Kenndler E
    Electrophoresis; 2000 Sep; 21(15):3160-73. PubMed ID: 11001214
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of electrostatic interaction between fluoxetine and lipid membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR.
    Do TTT; Dao UPN; Bui HT; Nguyen TT
    Chem Phys Lipids; 2017 Oct; 207(Pt A):10-23. PubMed ID: 28684088
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of liposomes as a dispersed pseudo-stationary phase in capillary electrophoresis of basic proteins.
    Corradini D; Mancini G; Bello C
    J Chromatogr A; 2004 Oct; 1051(1-2):103-10. PubMed ID: 15532561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control and role of pH in peptide-lipid interactions in oriented membrane samples.
    Misiewicz J; Afonin S; Ulrich AS
    Biochim Biophys Acta; 2015 Mar; 1848(3):833-41. PubMed ID: 25511586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction between Antibacterial Peptide Apep10 and Escherichia coli Membrane Lipids Evaluated Using Liposome as Pseudo-Stationary Phase.
    Tang W; Pu C; Li M
    PLoS One; 2017; 12(1):e0164594. PubMed ID: 28052090
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vesicle fusion to planar membranes is enhanced by cholesterol and low temperature.
    Lee DE; Lew MG; Woodbury DJ
    Chem Phys Lipids; 2013 Jan; 166():45-54. PubMed ID: 23200791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of lipid segregation and lysolipid dissociation on drug release from thermosensitive liposomes.
    Sandström MC; Ickenstein LM; Mayer LD; Edwards K
    J Control Release; 2005 Sep; 107(1):131-42. PubMed ID: 16023753
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Liposome electrokinetic chromatography based in vitro model for early screening of the drug-induced phospholipidosis risk.
    Wang T; Feng Y; Jin X; Fan X; Crommen J; Jiang Z
    J Pharm Biomed Anal; 2014 Aug; 96():263-71. PubMed ID: 24814828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.