These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 16038383)

  • 41. Effects of ultrathin silicone coating of porous membrane on gas transfer and hemolytic performance.
    Niimi Y; Ueyama K; Yamaji K; Yamane S; Tayama E; Sueoka A; Kuwana K; Tahara K; Nosé Y
    Artif Organs; 1997 Oct; 21(10):1082-6. PubMed ID: 9335365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of perfusion quality in hollow-fiber membrane oxygenators for neonatal extracorporeal life support.
    Talor J; Yee S; Rider A; Kunselman AR; Guan Y; Undar A
    Artif Organs; 2010 Apr; 34(4):E110-6. PubMed ID: 20420601
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison between clinical indicators of transmembrane oxygenator thrombosis and multidetector computed tomographic analysis.
    Panigada M; L'Acqua C; Passamonti SM; Mietto C; Protti A; Riva R; Gattinoni L
    J Crit Care; 2015 Apr; 30(2):441.e7-13. PubMed ID: 25547046
    [TBL] [Abstract][Full Text] [Related]  

  • 44. North American neonatal extracorporeal membrane oxygenation (ECMO) devices and team roles: 2008 survey results of Extracorporeal Life Support Organization (ELSO) centers.
    Lawson DS; Lawson AF; Walczak R; McRobb C; McDermott P; Shearer IR; Lodge A; Jaggers J
    J Extra Corpor Technol; 2008 Sep; 40(3):166-74. PubMed ID: 18853828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elimination of sevoflurane is reduced in plasma-tight compared to conventional membrane oxygenators.
    Prasser C; Zelenka M; Gruber M; Philipp A; Keyser A; Wiesenack C
    Eur J Anaesthesiol; 2008 Feb; 25(2):152-7. PubMed ID: 17655810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A description of a prototype miniature extracorporeal membrane oxygenation circuit using current technologies in a sheep model.
    Terry B; Gunst G; Melchior R; Wolfe D; Feocco N; Graham S; Searles B; Darling E
    J Extra Corpor Technol; 2005 Sep; 37(3):315-7. PubMed ID: 16350388
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Progressive increase in D-dimer levels during extracorporeal membrane oxygenation can predict membrane oxygenator failure in children given hematopoietic stem cell transplantation?
    Di Nardo M; Merli P; Cecchetti C; Pasotti E; Bertaina A; Locatelli F
    J Crit Care; 2016 Feb; 31(1):262-3. PubMed ID: 26476579
    [No Abstract]   [Full Text] [Related]  

  • 48. Extended Cellular Deposits on Gas Exchange Capillaries Are Not an Indicator of Clot Formation: Analysis of Different Membrane Oxygenators.
    Dropco I; Philipp A; Foltan M; Lunz D; Lubnow M; Lehle K
    ASAIO J; 2023 Apr; 69(4):e134-e141. PubMed ID: 36780695
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preclinical evaluation of a new hollow fiber silicone membrane oxygenator for pediatric cardiopulmonary bypass: ex-vivo study.
    Kawahito S; Haraguchi S; Maeda T; Motomura T; Takano T; Nonaka K; Linneweber J; Ichikawa S; Kawamura M; Ishitoya H; Glueck J; Sato K; Nosé Y
    Ann Thorac Cardiovasc Surg; 2002 Feb; 8(1):7-11. PubMed ID: 11916436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Potential Danger of Pre-Pump Clamping on Negative Pressure-Associated Gaseous Microemboli Generation During Extracorporeal Life Support--An In Vitro Study.
    Wang S; Chin BJ; Gentile F; Kunselman AR; Palanzo D; Ündar A
    Artif Organs; 2016 Jan; 40(1):89-94. PubMed ID: 26153848
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro evaluation of the Mera Silox-S 0.5 and 0.8 m 2 silicone hollow-fibre membrane oxygenator for use in neonatal ECMO.
    Rais-Bahrami K; Mikesell G; Seale WR; Rivera O; Hearty JP; Short BL
    Perfusion; 1992; 7(4):315-20. PubMed ID: 10148027
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Case report: plasma leakage in a polymethylpentene oxygenator during extracorporeal life support.
    Puis L; Ampe L; Hertleer R
    Perfusion; 2009 Jan; 24(1):51-2. PubMed ID: 19567550
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clinical evaluation of two different extracorporeal membrane oxygenation systems: a single center report.
    Yu K; Long C; Hei F; Li J; Liu J; Ji B; Gao G; Zhang H; Song Y; Wang W
    Artif Organs; 2011 Jul; 35(7):733-7. PubMed ID: 21375546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Immobilization and characterization of carbonic anhydrase on the surface of hollow fiber membrane of polymethyl pentene].
    Wang Q; Zhang D; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2009 Jul; 25(7):1055-61. PubMed ID: 19835148
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extracorporeal membrane oxygenation with a poly-methylpentene oxygenator (Quadrox D). The experience of a single Italian centre in adult patients with refractory cardiogenic shock.
    Formica F; Avalli L; Martino A; Maggioni E; Muratore M; Ferro O; Pesenti A; Paolini G
    ASAIO J; 2008; 54(1):89-94. PubMed ID: 18204321
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of oxygenator selection on hemodynamic energy indicators under pulsatile and nonpulsatile flow in a neonatal extracorporeal life support model.
    Vasavada R; Khan S; Qiu F; Kunselman A; Undar A
    Artif Organs; 2011 Jun; 35(6):E101-7. PubMed ID: 21623841
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficiency in extracorporeal membrane oxygenation-cellular deposits on polymethylpentene membranes increase resistance to blood flow and reduce gas exchange capacity.
    Lehle K; Philipp A; Gleich O; Holzamer A; Müller T; Bein T; Schmid C
    ASAIO J; 2008; 54(6):612-7. PubMed ID: 19033775
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a silicone hollow fiber membrane oxygenator for ECMO application.
    Yamane S; Ohashi Y; Sueoka A; Sato K; Kuwana J; Nosé Y
    ASAIO J; 1998; 44(5):M384-7. PubMed ID: 9804456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass in neonates.
    Undar A; Owens WR; McGarry MC; Surprise DL; Kilpack VD; Mueller MW; McKenzie ED; Fraser CD
    Perfusion; 2005 May; 20(3):135-8. PubMed ID: 16038384
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The history of extracorporeal oxygenators.
    Lim MW
    Anaesthesia; 2006 Oct; 61(10):984-95. PubMed ID: 16978315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.