These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16038386)

  • 1. Microbubble production in an in vitro cardiopulmonary bypass circuit ventilated with xenon.
    Casey ND; Chandler J; Gifford D; Falter F
    Perfusion; 2005 May; 20(3):145-50. PubMed ID: 16038386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of xenon, nitrous oxide and nitrogen on gas bubble expansion during cardiopulmonary bypass.
    Grocott HP; Sato Y; Homi HM; Smith BE
    Eur J Anaesthesiol; 2005 May; 22(5):353-8. PubMed ID: 15918383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A recovery model of partial cardiopulmonary bypass in the rat.
    Fabre O; Zegdi R; Vincentelli A; Cambillaud M; Prat A; Carpentier A; Fabiani JN
    Perfusion; 2001 May; 16(3):215-20. PubMed ID: 11419657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo evaluation of Dideco's paediatric cardiopulmonary circuit for neonates weighing less than five kilograms.
    Thiara AS; Eggereide V; Pedersen T; Lindberg H; Fiane AE
    Perfusion; 2010 Jul; 25(4):229-35. PubMed ID: 20576728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass in neonates.
    Undar A; Owens WR; McGarry MC; Surprise DL; Kilpack VD; Mueller MW; McKenzie ED; Fraser CD
    Perfusion; 2005 May; 20(3):135-8. PubMed ID: 16038384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of pulmonary function in puppies undergoing total cardiopulmonary bypass with bubble or membrane oxygenators.
    Rhodes EL; Kirsh MM; Howatt W; O'Rourke PT; Straker J; Sloan H
    J Thorac Cardiovasc Surg; 1974 Oct; 68(4):658-63. PubMed ID: 4411602
    [No Abstract]   [Full Text] [Related]  

  • 7. Use of a Modified Cardiopulmonary Bypass Circuit for Suction Embolectomy with the AngioVac Device.
    Michelson CM; Dyke CM; Wick DJ; Guenther R; Dangerfield D; Wiisanen ME
    J Extra Corpor Technol; 2017 Dec; 49(4):299-303. PubMed ID: 29302121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli.
    Norman MJ; Sistino JJ; Acsell JR
    J Extra Corpor Technol; 2004 Dec; 36(4):336-42. PubMed ID: 15679274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Use of lande-edwards membrane oxygenators as artificial lungs].
    Vanderhoeft P; Derks C; de Francquen P; Sarezky M; Simpson R
    Acta Chir Belg; 1975 Jan; 74(1):82-5. PubMed ID: 1114875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Volatile Anesthetic Agent in Extracorporeal Circuit as a Cause of Break in Polycarbonate Connector-Lessons Learnt.
    Gowda D; Rashmi K; Pandarinathan N; Desai N
    J Extra Corpor Technol; 2017 Sep; 49(3):198-200. PubMed ID: 28979044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Should Air Bubble Detectors Be Used to Quantify Microbubble Activity during Cardiopulmonary Bypass?
    Newland RF; Baker RA; Mazzone AL; Valiyapurayil VN
    J Extra Corpor Technol; 2015 Sep; 47(3):174-9. PubMed ID: 26543252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of venous reservoir level on microbubbles in cardiopulmonary bypass.
    Nielsen PF; Funder JA; Jensen MØ; Nygaard H
    Perfusion; 2008 Nov; 23(6):347-53. PubMed ID: 19454563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of two different extracorporeal circuits on cerebral embolization during cardiopulmonary bypass in children.
    Rodriguez RA; Belway D
    Perfusion; 2006 Dec; 21(5):247-53. PubMed ID: 17201077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prebypass filtration of cardiopulmonary bypass circuits: an outdated technique?
    Merkle F; Böttcher W; Hetzer R
    Perfusion; 2003 Mar; 18 Suppl 1():81-8. PubMed ID: 12708770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elimination of sevoflurane is reduced in plasma-tight compared to conventional membrane oxygenators.
    Prasser C; Zelenka M; Gruber M; Philipp A; Keyser A; Wiesenack C
    Eur J Anaesthesiol; 2008 Feb; 25(2):152-7. PubMed ID: 17655810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of pressure on gases in solution: possible insights to improve microbubble filtration for extracorporeal circulation.
    Herbst DP
    J Extra Corpor Technol; 2013 Jun; 45(2):94-106. PubMed ID: 23930378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model predictions of gas embolism growth and reabsorption during xenon anesthesia.
    Sta Maria N; Eckmann DM
    Anesthesiology; 2003 Sep; 99(3):638-45. PubMed ID: 12960548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deairing of the venous drainage in standard extracorporeal circulation results in a profound reduction of arterial micro bubbles.
    Stock UA; Müller T; Bienek R; Krause H; Hartrumpf M; Albes J
    Thorac Cardiovasc Surg; 2006 Feb; 54(1):39-41. PubMed ID: 16485187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of dynamic bubble trap in coronary artery bypass with cardiopulmonary bypass: an initial study].
    Wu M; Chen RK; Cremer J
    Zhonghua Yi Xue Za Zhi; 2004 Dec; 84(23):1986-9. PubMed ID: 15730812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype.
    Herbst DP
    J Extra Corpor Technol; 2014 Sep; 46(3):239-50. PubMed ID: 26357790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.