These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16038592)

  • 1. Epithermal neutron beams for clinical studies of boron neutron capture therapy: a dosimetric comparison of seven beams.
    Binns PJ; Riley KJ; Harling OK
    Radiat Res; 2005 Aug; 164(2):212-20. PubMed ID: 16038592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance characteristics of the MIT fission converter based epithermal neutron beam.
    Riley KJ; Binns PJ; Harling OK
    Phys Med Biol; 2003 Apr; 48(7):943-58. PubMed ID: 12701897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical dosimetry of an epithermal neutron beam for neutron capture therapy: dose distributions under reference conditions.
    Raaijmakers CP; Konijnenberg MW; Mijnheer BJ
    Int J Radiat Oncol Biol Phys; 1997 Mar; 37(4):941-51. PubMed ID: 9128973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phantom materials for boron neutron capture therapy.
    Raaijmakers CP; Nottelman EL; Mijnheer BJ
    Phys Med Biol; 2000 Aug; 45(8):2353-61. PubMed ID: 10958199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neutron sensitivity of dosimeters applied to boron neutron capture therapy.
    Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ
    Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of free beam neutron spectra at eight BNCT facilities worldwide.
    Auterinen I; Serén T; Anttila K; Kosunen A; Savolainen S
    Appl Radiat Isot; 2004 Nov; 61(5):1021-6. PubMed ID: 15308186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of neutron beams for boron neutron capture therapy: in-air radiobiological dosimetry.
    Yamamoto T; Matsumura A; Yamamoto K; Kumada H; Hori N; Torii Y; Shibata Y; Nose T
    Radiat Res; 2003 Jul; 160(1):70-6. PubMed ID: 12816525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor.
    Rogus RD; Harling OK; Yanch JC
    Med Phys; 1994 Oct; 21(10):1611-25. PubMed ID: 7869994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.
    Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G
    Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A toolkit for epithermal neutron beam characterisation in BNCT.
    Auterinen I; Serén T; Uusi-Simola J; Kosunen A; Savolainen S
    Radiat Prot Dosimetry; 2004; 110(1-4):587-93. PubMed ID: 15353713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physical dosimetry intercomparison for BNCT.
    Riley KJ; Binns PJ; Greenberg DD; Harling OK
    Med Phys; 2002 May; 29(5):898-904. PubMed ID: 12033586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure.
    Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW
    Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photon quality correction factors for ionization chambers in an epithermal neutron beam.
    Munck af Rosenschöld PM; Ceberg CP; Giusti V; Andreo P
    Phys Med Biol; 2002 Jul; 47(14):2397-409. PubMed ID: 12171330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo based dosimetry and treatment planning for neutron capture therapy of brain tumors.
    Zamenhof RG; Clement SD; Harling OK; Brenner JF; Wazer DE; Madoc-Jones H; Yanch JC
    Basic Life Sci; 1990; 54():283-305. PubMed ID: 2268244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
    Nguyen TT; Kajimoto T; Tanaka K; Nguyen CC; Endo S
    Med Phys; 2016 Nov; 43(11):6049. PubMed ID: 27806584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.