BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16038603)

  • 21. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism.
    Jezek P; Hlavatá L
    Int J Biochem Cell Biol; 2005 Dec; 37(12):2478-503. PubMed ID: 16103002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative stress & male infertility.
    Makker K; Agarwal A; Sharma R
    Indian J Med Res; 2009 Apr; 129(4):357-67. PubMed ID: 19535829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Oxidative stress and periodontal disease--periodontal disease as a life-related disease and vascular disease].
    Lee MC
    Nihon Yakurigaku Zasshi; 2014 Dec; 144(6):281-6. PubMed ID: 25492364
    [No Abstract]   [Full Text] [Related]  

  • 26. Ability of oral bacteria to induce tissue-destructive molecules from human neutrophils.
    Shin J; Ji S; Choi Y
    Oral Dis; 2008 May; 14(4):327-34. PubMed ID: 18449962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis.
    Dan Dunn J; Alvarez LA; Zhang X; Soldati T
    Redox Biol; 2015 Dec; 6():472-485. PubMed ID: 26432659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential reactive oxygen species production of neutrophils and their oxidative damage in patients with active and inactive systemic lupus erythematosus.
    Elloumi N; Ben Mansour R; Marzouk S; Mseddi M; Fakhfakh R; Gargouri B; Masmoudi H; Lassoued S
    Immunol Lett; 2017 Apr; 184():1-6. PubMed ID: 28163154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos.
    Zhao X; Ren X; Zhu R; Luo Z; Ren B
    Aquat Toxicol; 2016 Nov; 180():56-70. PubMed ID: 27658222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa.
    Koppers AJ; De Iuliis GN; Finnie JM; McLaughlin EA; Aitken RJ
    J Clin Endocrinol Metab; 2008 Aug; 93(8):3199-207. PubMed ID: 18492763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive oxygen species in health and disease.
    Datta K; Sinha S; Chattopadhyay P
    Natl Med J India; 2000; 13(6):304-10. PubMed ID: 11209486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial generation of free radicals and hypoxic signaling.
    Poyton RO; Ball KA; Castello PR
    Trends Endocrinol Metab; 2009 Sep; 20(7):332-40. PubMed ID: 19733481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha.
    Nguyen HX; O'Barr TJ; Anderson AJ
    J Neurochem; 2007 Aug; 102(3):900-12. PubMed ID: 17561941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase.
    Musatov A; Robinson NC
    Free Radic Res; 2012 Nov; 46(11):1313-26. PubMed ID: 22856385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Simmet lecture: new horizons on an old landscape--oxidative stress, DNA damage and apoptosis in the male germ line.
    Aitken RJ; De Iuliis GN; Gibb Z; Baker MA
    Reprod Domest Anim; 2012 Aug; 47 Suppl 4():7-14. PubMed ID: 22827344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neutrophil function and dysfunction in periodontal disease.
    Van Dyke TE; Vaikuntam J
    Curr Opin Periodontol; 1994; ():19-27. PubMed ID: 8032460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism.
    Liemburg-Apers DC; Willems PH; Koopman WJ; Grefte S
    Arch Toxicol; 2015 Aug; 89(8):1209-26. PubMed ID: 26047665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acrylamide induces immunotoxicity through reactive oxygen species production and caspase-dependent apoptosis in mice splenocytes via the mitochondria-dependent signaling pathways.
    Zamani E; Shaki F; AbedianKenari S; Shokrzadeh M
    Biomed Pharmacother; 2017 Oct; 94():523-530. PubMed ID: 28780470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].
    Michalak A; Krzeszowiak J; Markiewicz-Górka I
    Postepy Hig Med Dosw (Online); 2014 Dec; 68():1483-91. PubMed ID: 25531712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.