BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1054 related articles for article (PubMed ID: 16038796)

  • 1. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of membrane components in the binding of proteins to membrane surfaces.
    Philip F; Scarlata S
    Biochemistry; 2004 Sep; 43(37):11691-700. PubMed ID: 15362853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pasteurella multocida toxin activates Gbetagamma dimers of heterotrimeric G proteins.
    Preuss I; Kurig B; Nürnberg B; Orth JH; Aktories K
    Cell Signal; 2009 Apr; 21(4):551-8. PubMed ID: 19135527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction.
    Heydorn A; Ward RJ; Jorgensen R; Rosenkilde MM; Frimurer TM; Milligan G; Kostenis E
    Mol Pharmacol; 2004 Aug; 66(2):250-9. PubMed ID: 15266015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G-protein betagamma-subunits contribute to the coupling specificity of the beta2-adrenergic receptor to G(s).
    Kühn B; Christel C; Wieland T; Schultz G; Gudermann T
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Mar; 365(3):231-41. PubMed ID: 11882919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Over-expression of a truncated Arabidopsis thaliana heterotrimeric G protein gamma subunit results in a phenotype similar to alpha and beta subunit knockouts.
    Chakravorty D; Botella JR
    Gene; 2007 May; 393(1-2):163-70. PubMed ID: 17383830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of differential stability of G protein βγ dimers containing the γ11 subunit on functional activity at the M1 muscarinic receptor, A1 adenosine receptor, and phospholipase C-β.
    McIntire WE; MacCleery G; Murphree LJ; Kerchner KR; Linden J; Garrison JC
    Biochemistry; 2006 Sep; 45(38):11616-31. PubMed ID: 16981721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gbetagamma signaling and Ca2+ mobilization co-operate synergistically in a Sos and Rac-dependent manner in the activation of JNK by Gq-coupled receptors.
    Chan AS; Wong YH
    Cell Signal; 2004 Jul; 16(7):823-36. PubMed ID: 15115661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ric-8 enhances G protein betagamma-dependent signaling in response to betagamma-binding peptides in intact cells.
    Malik S; Ghosh M; Bonacci TM; Tall GG; Smrcka AV
    Mol Pharmacol; 2005 Jul; 68(1):129-36. PubMed ID: 15802611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex.
    Tesmer VM; Kawano T; Shankaranarayanan A; Kozasa T; Tesmer JJ
    Science; 2005 Dec; 310(5754):1686-90. PubMed ID: 16339447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translating G protein subunit diversity into functional specificity.
    Robishaw JD; Berlot CH
    Curr Opin Cell Biol; 2004 Apr; 16(2):206-9. PubMed ID: 15196565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteasome involvement in the degradation of the G(q) family of Galpha subunits.
    Johansson BB; Minsaas L; Aragay AM
    FEBS J; 2005 Oct; 272(20):5365-77. PubMed ID: 16218966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidic acid regulates signal output by G protein coupled receptors through direct interaction with phospholipase C-beta(1).
    Litosch I; Pujari R; Lee SJ
    Cell Signal; 2009 Sep; 21(9):1379-84. PubMed ID: 19414067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex.
    Clancy SM; Fowler CE; Finley M; Suen KF; Arrabit C; Berton F; Kosaza T; Casey PJ; Slesinger PA
    Mol Cell Neurosci; 2005 Feb; 28(2):375-89. PubMed ID: 15691717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective interactions between G protein subunits and RGS4 with the C-terminal domains of the mu- and delta-opioid receptors regulate opioid receptor signaling.
    Georgoussi Z; Leontiadis L; Mazarakou G; Merkouris M; Hyde K; Hamm H
    Cell Signal; 2006 Jun; 18(6):771-82. PubMed ID: 16120478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A docking site for G protein βγ subunits on the parathyroid hormone 1 receptor supports signaling through multiple pathways.
    Mahon MJ; Bonacci TM; Divieti P; Smrcka AV
    Mol Endocrinol; 2006 Jan; 20(1):136-46. PubMed ID: 16099817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of the interaction between mutationally activated Gα
    Aumiller JL; Wedegaertner PB
    J Biol Chem; 2023 Feb; 299(2):102880. PubMed ID: 36626984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of agonist-dependent and -independent signal initiation of alpha(1b)-adrenoceptor mutants by direct analysis of guanine nucleotide exchange on the G protein galpha(11).
    Carrillo JJ; Stevens PA; Milligan G
    J Pharmacol Exp Ther; 2002 Sep; 302(3):1080-8. PubMed ID: 12183666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heterotrimeric G-protein GanB(alpha)-SfaD(beta)-GpgA(gamma) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans.
    Lafon A; Seo JA; Han KH; Yu JH; d'Enfert C
    Genetics; 2005 Sep; 171(1):71-80. PubMed ID: 15944355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-terminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q).
    Crouthamel M; Thiyagarajan MM; Evanko DS; Wedegaertner PB
    Cell Signal; 2008 Oct; 20(10):1900-10. PubMed ID: 18647648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.