These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16038963)

  • 1. Mass balance modelling of contaminants in river basins: a flexible matrix approach.
    Warren C; Mackay D; Whelan M; Fox K
    Chemosphere; 2005 Dec; 61(10):1458-67. PubMed ID: 16038963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass balance modelling of contaminants in river basins: application of the flexible matrix approach.
    Warren C; Mackay D; Whelan M; Fox K
    Chemosphere; 2007 Jul; 68(7):1232-44. PubMed ID: 17368505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen in river basins: sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland.
    Lepistö A; Granlund K; Kortelainen P; Räike A
    Sci Total Environ; 2006 Jul; 365(1-3):238-59. PubMed ID: 16624380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RIONET: a water quality management tool for river basins.
    Reuter H; Krause G; Mönig A; Wulkow M; Horn H
    Water Sci Technol; 2003; 48(10):47-53. PubMed ID: 15137152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A river water quality model integrated with a web-based geographic information system.
    Wang X; Homer M; Dyer SD; White-Hull C; Du C
    J Environ Manage; 2005 May; 75(3):219-28. PubMed ID: 15829364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concepts for river water quality processes for an integrated river basin modelling.
    van Griensven A; Bauwens W
    Water Sci Technol; 2003; 48(3):1-8. PubMed ID: 14518848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass balance approach for assessment of pollution load in the Krishna River.
    Sekhar C; Umamahesh NV
    J Environ Sci Eng; 2004 Apr; 46(2):159-71. PubMed ID: 16649607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fugacity based continuous and dynamic fate and transport model for river networks and its application to Altamaha River.
    Kilic SG; Aral MM
    Sci Total Environ; 2009 Jun; 407(12):3855-66. PubMed ID: 19321188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk assessment of contaminated sediments in river basins--theoretical considerations and pragmatic approach.
    Heise S; Förstner U
    J Environ Monit; 2007 Sep; 9(9):943-52. PubMed ID: 17726554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling chloride-discharge relationships in Krishna river basin.
    Sekhar MC; Indira Ch
    Water Sci Technol; 2003; 48(7):57-63. PubMed ID: 14653634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a holistic and risk-based management of European river basins.
    Brack W; Apitz SE; Borchardt D; Brils J; Cardoso AC; Foekema EM; van Gils J; Jansen S; Harris B; Hein M; Heise S; Hellsten S; de Maagd PG; Müller D; Panov VE; Posthuma L; Quevauviller P; Verdonschot PF; von der Ohe PC
    Integr Environ Assess Manag; 2009 Jan; 5(1):5-10. PubMed ID: 19132820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The integrated project AquaTerra of the EU sixth framework lays foundations for better understanding of river-sediment-soil-groundwater systems.
    Gerzabek MH; Barceló D; Bellin A; Rijnaarts HH; Slob A; Darmendrail D; Fowler HJ; Négrel P; Frank E; Grathwohl P; Kuntz D; Barth JA
    J Environ Manage; 2007 Jul; 84(2):237-43. PubMed ID: 17166649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D simulation of transport and degradation in the River Rhine.
    Teichmann L; Reuschenbach P; Müller B; Horn H
    Water Sci Technol; 2002; 46(6-7):99-104. PubMed ID: 12380980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic modeling of chemical fate and transport in multimedia environments at watershed scale-I: theoretical considerations and model implementation.
    Luo Y; Gao Q; Yang X
    J Environ Manage; 2007 Apr; 83(1):44-55. PubMed ID: 16690204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ArcEGMO-URBAN--hydrological model for point sources in river basins.
    Biegel M; Schanze J; Krebs P
    Water Sci Technol; 2005; 52(5):249-56. PubMed ID: 16248202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the dispersion of radionuclides following short duration releases to rivers: Part 1. Water and sediment.
    Smith JT; Bowes MJ; Denison FH
    Sci Total Environ; 2006 Sep; 368(2-3):485-501. PubMed ID: 16678242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrodynamic water quality model for propagation of pollutants in rivers.
    Mannina G; Viviani G
    Water Sci Technol; 2010; 62(2):288-99. PubMed ID: 20651432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the temporal changes of OCP pollution in Hangzhou, China.
    Cao HY; Liang T; Tao S; Zhang CS
    Chemosphere; 2007 Apr; 67(7):1335-45. PubMed ID: 17215026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaporative isotope enrichment as a constraint on reach water balance along a dryland river.
    Gibson JJ; Sadek MA; Stone DJ; Hughes CE; Hankin S; Cendon DI; Hollins SE
    Isotopes Environ Health Stud; 2008 Mar; 44(1):83-98. PubMed ID: 18320430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.