These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16039101)

  • 1. Methods for parameter identification in oscillatory networks and application to cortical and thalamic 600 Hz activity.
    Leistritz L; Suesse T; Haueisen J; Hilgenfeld B; Witte H
    J Physiol Paris; 2006 Jan; 99(1):58-65. PubMed ID: 16039101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of cortical and thalamic 600 Hz activity by means of oscillatory networks.
    Milde T; Haueisen J; Witte H; Leistritz L
    J Physiol Paris; 2009 Nov; 103(6):342-7. PubMed ID: 19497365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural pattern dynamics in an oscillator model of the thalamo-reticular system.
    Liske B; Schwarz J; Stevens A
    J Physiol Paris; 2006 Jan; 99(1):66-71. PubMed ID: 16087325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A population-based model of the nonlinear dynamics of the thalamocortical feedback network displays intrinsic oscillations in the spindling (7-14 Hz) range.
    Yousif NA; Denham M
    Eur J Neurosci; 2005 Dec; 22(12):3179-87. PubMed ID: 16367784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary somatosensory contextual modulation is encoded by oscillation frequency change.
    Götz T; Milde T; Curio G; Debener S; Lehmann T; Leistritz L; Witte OW; Witte H; Haueisen J
    Clin Neurophysiol; 2015 Sep; 126(9):1769-79. PubMed ID: 25670344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying mutual information transfer in the brain with differential-algebraic modeling: Evidence for fast oscillatory coupling between cortical somatosensory areas 3b and 1.
    Haueisen J; Leistritz L; Süsse T; Curio G; Witte H
    Neuroimage; 2007 Aug; 37(1):130-6. PubMed ID: 17560129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear interactions of high-frequency oscillations in the human somatosensory system.
    Jaros U; Hilgenfeld B; Lau S; Curio G; Haueisen J
    Clin Neurophysiol; 2008 Nov; 119(11):2647-57. PubMed ID: 18829382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realistically coupled neural mass models can generate EEG rhythms.
    Sotero RC; Trujillo-Barreto NJ; Iturria-Medina Y; Carbonell F; Jimenez JC
    Neural Comput; 2007 Feb; 19(2):478-512. PubMed ID: 17206872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interference of tactile and pain stimuli on thalamocortical signal processing in humans revealed by median nerve SEPs.
    Gobbelé R; Halboni P; Buchner H; Waberski TD
    Clin Neurophysiol; 2007 Nov; 118(11):2497-505. PubMed ID: 17892968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic control for synchronization of separated cortical areas through thalamic relay.
    Gollo LL; Mirasso C; Villa AE
    Neuroimage; 2010 Sep; 52(3):947-55. PubMed ID: 19958835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex.
    Sun JJ; Luhmann HJ
    Eur J Neurosci; 2007 Oct; 26(7):1995-2004. PubMed ID: 17868367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and pathological oscillatory networks in the human motor system.
    Schnitzler A; Timmermann L; Gross J
    J Physiol Paris; 2006 Jan; 99(1):3-7. PubMed ID: 16054347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medium-range oscillatory network and the 20-Hz sensorimotor induced potential.
    Brovelli A; Battaglini PP; Naranjo JR; Budai R
    Neuroimage; 2002 May; 16(1):130-41. PubMed ID: 11969324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of correlated network activity at the cortical level with MEG.
    Kujala J; Gross J; Salmelin R
    Neuroimage; 2008 Feb; 39(4):1706-20. PubMed ID: 18164214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing cortical functional connectivity by partial directed coherence: simulations and application to real data.
    Astolfi L; Cincotti F; Mattia D; Marciani MG; Baccalà LA; de Vico Fallani F; Salinari S; Ursino M; Zavaglia M; Babiloni F
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1802-12. PubMed ID: 16941836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study.
    Fuggetta G; Fiaschi A; Manganotti P
    Neuroimage; 2005 Oct; 27(4):896-908. PubMed ID: 16054397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attentional shifts towards an expected visual target alter the level of alpha-band oscillatory activity in the human calcarine cortex.
    Yamagishi N; Goda N; Callan DE; Anderson SJ; Kawato M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):799-809. PubMed ID: 16246532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BOLD adaptation in vibrotactile stimulation: neuronal networks involved in frequency discrimination.
    Li Hegner Y; Saur R; Veit R; Butts R; Leiberg S; Grodd W; Braun C
    J Neurophysiol; 2007 Jan; 97(1):264-71. PubMed ID: 17065253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spikes, synchrony, and attentive learning by laminar thalamocortical circuits.
    Grossberg S; Versace M
    Brain Res; 2008 Jul; 1218():278-312. PubMed ID: 18533136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A learning rule for the emergence of stable dynamics and timing in recurrent networks.
    Buonomano DV
    J Neurophysiol; 2005 Oct; 94(4):2275-83. PubMed ID: 16160088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.