These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16039129)

  • 21. Dynamic plantar pressure parameters associated with static arch height index during gait.
    Teyhen DS; Stoltenberg BE; Collinsworth KM; Giesel CL; Williams DG; Kardouni CH; Molloy JM; Goffar SL; Christie DS; McPoil T
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):391-6. PubMed ID: 19246138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of custom-made braces for the ankle and hindfoot on ankle and foot kinematics and ground reaction forces.
    Kitaoka HB; Crevoisier XM; Harbst K; Hansen D; Kotajarvi B; Kaufman K
    Arch Phys Med Rehabil; 2006 Jan; 87(1):130-5. PubMed ID: 16401451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of inaccuracies in anthropometric data and linked-segment inverse dynamic modeling on kinetics of gait in persons with partial foot amputation.
    Dillon MP; Barker TM; Pettet G
    J Rehabil Res Dev; 2008; 45(9):1303-16. PubMed ID: 19319755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Handling of impact forces in inverse dynamics.
    Bisseling RW; Hof AL
    J Biomech; 2006; 39(13):2438-44. PubMed ID: 16209869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validation of net joint loads calculated by inverse dynamics in case of complex movements: application to balance recovery movements.
    Robert T; Chèze L; Dumas R; Verriest JP
    J Biomech; 2007; 40(11):2450-6. PubMed ID: 17270194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Perspectives on Foot Segment Forces and Joint Kinetics-Integrating Plantar Shear Stresses and Pressures with Multi-segment Foot Modeling.
    Bruening DA; Petersen SR; Ridge ST
    Ann Biomed Eng; 2024 Jun; 52(6):1719-1731. PubMed ID: 38494465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic motion planning of 3D human locomotion using gradient-based optimization.
    Kim HJ; Wang Q; Rahmatalla S; Swan CC; Arora JS; Abdel-Malek K; Assouline JG
    J Biomech Eng; 2008 Jun; 130(3):031002. PubMed ID: 18532851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induced acceleration contributions to locomotion dynamics are not physically well defined.
    Chen G
    Gait Posture; 2006 Jan; 23(1):37-44. PubMed ID: 16311193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method for two dimensional multi-segmental kinematic and kinetic analysis of normal and pathological human gait.
    van Best JA; Pronk CN; Mechelse K; Pompe R; van Eijndhoven JH
    Med Prog Technol; 1983-1984; 10(3):143-59. PubMed ID: 6680765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient probabilistic methodology for incorporating uncertainty in body segment parameters and anatomical landmarks in joint loadings estimated from inverse dynamics.
    Langenderfer JE; Laz PJ; Petrella AJ; Rullkoetter PJ
    J Biomech Eng; 2008 Feb; 130(1):014502. PubMed ID: 18298193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calibration of measured center of pressure of a new stairway design for kinetic analysis of stair climbing.
    Yu B; Growney ES; Schultz FM; An KN
    J Biomech; 1996 Dec; 29(12):1625-8. PubMed ID: 8945662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partitioning ground reaction forces for multi-segment foot joint kinetics.
    Bruening DA; Takahashi KZ
    Gait Posture; 2018 May; 62():111-116. PubMed ID: 29544155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ambulatory assessment of ankle and foot dynamics.
    Schepers HM; Koopman HF; Veltink PH
    IEEE Trans Biomed Eng; 2007 May; 54(5):895-902. PubMed ID: 17518287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of knee coronal plane moment via modulation of center of pressure: a prospective gait analysis study.
    Haim A; Rozen N; Dekel S; Halperin N; Wolf A
    J Biomech; 2008 Oct; 41(14):3010-6. PubMed ID: 18805527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro study of foot kinematics using a dynamic walking cadaver model.
    Nester CJ; Liu AM; Ward E; Howard D; Cocheba J; Derrick T; Patterson P
    J Biomech; 2007; 40(9):1927-37. PubMed ID: 17081548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of equinus foot placement and intrinsic muscle response on knee extension during stance.
    Higginson JS; Zajac FE; Neptune RR; Kautz SA; Burgar CG; Delp SL
    Gait Posture; 2006 Jan; 23(1):32-6. PubMed ID: 16311192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The contralateral foot in children with unilateral clubfoot: a study of pressures and forces involved in gait.
    Favre P; Exner GU; Drerup B; Schmid D; Wetz HH; Jacob HA
    J Pediatr Orthop; 2007; 27(1):54-9. PubMed ID: 17195799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the expression of joint moments during gait.
    Schache AG; Baker R
    Gait Posture; 2007 Mar; 25(3):440-52. PubMed ID: 17011192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.