These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 16039372)

  • 21. Surface EMG based hand gesture identification using semi blind ICA: validation of ICA matrix analysis.
    Naik GR; Kumar DK; Palaniswami M
    Electromyogr Clin Neurophysiol; 2008; 48(3-4):169-80. PubMed ID: 18551837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experiences in the creation of an electromyography database to help hand amputated persons.
    Atzori M; Gijsberts A; Heynen S; Hager AG; Castellimi C; Caputo B; Müller H
    Stud Health Technol Inform; 2012; 180():828-32. PubMed ID: 22874308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses.
    Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal.
    Jiang N; Englehart KB; Parker PA
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1070-80. PubMed ID: 19272889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward an objective interpretation of surface EMG patterns: a voluntary response index (VRI).
    Lee DC; Lim HK; McKay WB; Priebe MM; Holmes SA; Sherwood AM
    J Electromyogr Kinesiol; 2004 Jun; 14(3):379-88. PubMed ID: 15094151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses.
    Li G; Li Y; Yu L; Geng Y
    Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of grasping force from features of intramuscular EMG signals with mirrored bilateral training.
    Kamavuako EN; Farina D; Yoshida K; Jensen W
    Ann Biomed Eng; 2012 Mar; 40(3):648-56. PubMed ID: 22006428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures.
    Lyons KR; Joshi SS; Joshi SS; Lyons KR
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Left and right hand recognition in upper limb amputees.
    Nico D; Daprati E; Rigal F; Parsons L; Sirigu A
    Brain; 2004 Jan; 127(Pt 1):120-32. PubMed ID: 14607796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping phantom movement representations in the motor cortex of amputees.
    Mercier C; Reilly KT; Vargas CD; Aballea A; Sirigu A
    Brain; 2006 Aug; 129(Pt 8):2202-10. PubMed ID: 16844715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis.
    Tkach DC; Lipschutz RD; Finucane SB; Hargrove LJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650499. PubMed ID: 24187314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis.
    Karlik B; Tokhi MO; Alci M
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1255-61. PubMed ID: 14619995
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Training with virtual visual feedback to alleviate phantom limb pain.
    Mercier C; Sirigu A
    Neurorehabil Neural Repair; 2009; 23(6):587-94. PubMed ID: 19171946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intelligent multifunction myoelectric control of hand prostheses.
    Light CM; Chappell PH; Hudgins B; Engelhart K
    J Med Eng Technol; 2002; 26(4):139-46. PubMed ID: 12396328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct neural sensory feedback and control of a prosthetic arm.
    Dhillon GS; Horch KW
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):468-72. PubMed ID: 16425828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface electromyographic activity of five residual limb muscles recorded during isometric contraction in transfemoral amputees with osseointegrated prostheses.
    Pantall A; Durham S; Ewins D
    Clin Biomech (Bristol, Avon); 2011 Aug; 26(7):760-5. PubMed ID: 21474221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves.
    Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA
    J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand.
    Chu JU; Moon I; Mun MS
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning to control opening and closing a myoelectric hand.
    Bouwsema H; van der Sluis CK; Bongers RM
    Arch Phys Med Rehabil; 2010 Sep; 91(9):1442-6. PubMed ID: 20801265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.