These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 16039712)

  • 1. In vivo behavior of acrylic bone cement in total hip arthroplasty.
    Ries MD; Young E; Al-Marashi L; Goldstein P; Hetherington A; Petrie T; Pruitt L
    Biomaterials; 2006 Jan; 27(2):256-61. PubMed ID: 16039712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boneloc bone-cement: experience in hip arthroplasty during a 3-year period.
    Abdel-Kader KF; Allcock S; Walker DI; Chaudhry SB
    J Arthroplasty; 2001 Oct; 16(7):811-9. PubMed ID: 11607895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The significance of the micropores at the stem-cement interface in total hip replacement.
    Zhang H; Blunt L; Jiang X; Brown L; Barrans S
    J Biomater Sci Polym Ed; 2011; 22(7):845-56. PubMed ID: 21144164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Early aseptic loosening of the CF 30 femoral stem].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2007 Feb; 74(1):59-64. PubMed ID: 17331456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1990 Feb; 24(2):135-54. PubMed ID: 2329111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Dissertations 25 years after date 14. The development of porous polymethylmethacrylate cement as potential implant material].
    de Wijn JR
    Ned Tijdschr Tandheelkd; 2007 Mar; 114(3):134-8. PubMed ID: 17405477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational assessment of the effect of polyethylene wear rate, mantle thickness, and porosity on the mechanical failure of the acetabular cement mantle.
    Coultrup OJ; Hunt C; Wroblewski BM; Taylor M
    J Orthop Res; 2010 May; 28(5):565-70. PubMed ID: 19950359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an expandable stem total hip replacement system.
    Kummer FJ; Strauss EJ; Jaffe WL
    Bull NYU Hosp Jt Dis; 2007; 65(2):101-5. PubMed ID: 17581101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fracture toughness of steel-fiber-reinforced bone cement.
    Kotha SP; Li C; Schmid SR; Mason JJ
    J Biomed Mater Res A; 2004 Sep; 70(3):514-21. PubMed ID: 15293326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural degradation of acrylic bone cements due to in vivo and simulated aging.
    Hughes KF; Ries MD; Pruitt LA
    J Biomed Mater Res A; 2003 May; 65(2):126-35. PubMed ID: 12734804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear properties of bilaminar polymethylmethacrylate cement mantles in revision hip joint arthroplasty.
    Weinrauch PC; Bell C; Wilson L; Goss B; Lutton C; Crawford RW
    J Arthroplasty; 2007 Apr; 22(3):394-403. PubMed ID: 17400096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic volume changes of polymerising polymethyl methacrylate bone cement.
    Muller SD; Green SM; McCaskie AW
    Acta Orthop Scand; 2002 Dec; 73(6):684-7. PubMed ID: 12553519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Periprosthetic fractures of the hip].
    Weissinger M; Helmreich C; Pöll G
    Acta Chir Orthop Traumatol Cech; 2009 Jun; 76(3):179-85. PubMed ID: 19595278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Silicate coating of cemented titanium-based shafts in hip prosthetics reduces high aseptic loosening].
    Marx R; Faramarzi R; Jungwirth F; Kleffner BV; Mumme T; Weber M; Wirtz DC
    Z Orthop Unfall; 2009; 147(2):175-82. PubMed ID: 19358071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.
    Nuño N; Groppetti R; Senin N
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):956-62. PubMed ID: 16860449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.
    Walsh WR; Svehla MJ; Russell J; Saito M; Nakashima T; Gillies RM; Bruce W; Hori R
    Biomaterials; 2004 Sep; 25(20):4929-34. PubMed ID: 15109853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why would cement porosity reduction be clinically irrelevant, while experimental data show the contrary.
    Janssen D; Stolk J; Verdonschot N
    J Orthop Res; 2005 Jul; 23(4):691-7. PubMed ID: 16022978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty.
    Ni GX; Chiu KY; Lu WW; Wang Y; Zhang YG; Hao LB; Li ZY; Lam WM; Lu SB; Luk KD
    Biomaterials; 2006 Aug; 27(24):4348-55. PubMed ID: 16647752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.