These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 16039740)
1. Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the entorhinal cortex. Craig S; Commins S Neurosci Res; 2005 Oct; 53(2):140-6. PubMed ID: 16039740 [TBL] [Abstract][Full Text] [Related]
2. The subiculum to entorhinal cortex projection is capable of sustaining both short- and long-term plastic changes. Craig S; Commins S Behav Brain Res; 2006 Nov; 174(2):281-8. PubMed ID: 16945432 [TBL] [Abstract][Full Text] [Related]
3. Cooperativity between hippocampal-prefrontal short-term plasticity through associative long-term potentiation. Kawashima H; Izaki Y; Grace AA; Takita M Brain Res; 2006 Sep; 1109(1):37-44. PubMed ID: 16859647 [TBL] [Abstract][Full Text] [Related]
4. Plastic and metaplastic changes in the CA1 and subicular projections to the entorhinal cortex. Craig S; Commins S Brain Res; 2007 May; 1147():124-39. PubMed ID: 17368431 [TBL] [Abstract][Full Text] [Related]
5. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory. O'Mara SM; Commins S; Anderson M Hippocampus; 2000; 10(4):447-56. PubMed ID: 10985284 [TBL] [Abstract][Full Text] [Related]
6. Antagonism of glutamate receptors in the CA1 to perirhinal cortex projection prevents long-term potentiation and attenuates levels of brain-derived neurotrophic factor. Kealy J; Commins S Brain Res; 2009 Apr; 1265():53-64. PubMed ID: 19232328 [TBL] [Abstract][Full Text] [Related]
7. Long-term potentiation in the reciprocal corticohippocampal and corticocortical pathways in the chronically implanted, freely moving rat. Ivanco TL; Racine RJ Hippocampus; 2000; 10(2):143-52. PubMed ID: 10791836 [TBL] [Abstract][Full Text] [Related]
8. Differences in paired-pulse facilitation and long-term potentiation between dorsal and ventral CA1 regions in anesthetized rats. Maruki K; Izaki Y; Nomura M; Yamauchi T Hippocampus; 2001; 11(6):655-61. PubMed ID: 11811659 [TBL] [Abstract][Full Text] [Related]
9. Two reentrant pathways in the hippocampal-entorhinal system. Kloosterman F; van Haeften T; Lopes da Silva FH Hippocampus; 2004; 14(8):1026-39. PubMed ID: 15390170 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal visualization of long-term potentiation and depression in the hippocampal CA1 area. Aihara T; Kobayashi Y; Tsukada M Hippocampus; 2005; 15(1):68-78. PubMed ID: 15390164 [TBL] [Abstract][Full Text] [Related]
11. Reparatory effects of nicotine on NMDA receptor-mediated synaptic plasticity in the hippocampal CA1 region of chronically lead-exposed rats. Wang HL; Chen XT; Luo L; Lou ZY; Wang S; Chen JT; Wang M; Sun LG; Ruan DY Eur J Neurosci; 2006 Mar; 23(5):1111-9. PubMed ID: 16553775 [TBL] [Abstract][Full Text] [Related]
12. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Remondes M; Schuman EM Nature; 2004 Oct; 431(7009):699-703. PubMed ID: 15470431 [TBL] [Abstract][Full Text] [Related]
13. Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Steffenach HA; Witter M; Moser MB; Moser EI Neuron; 2005 Jan; 45(2):301-13. PubMed ID: 15664181 [TBL] [Abstract][Full Text] [Related]
14. Long-term synaptic plasticity in deep layer-originated associational projections to superficial layers of rat entorhinal cortex. Yang S; Lee DS; Chung CH; Cheong MY; Lee CJ; Jung MW Neuroscience; 2004; 127(4):805-12. PubMed ID: 15312893 [TBL] [Abstract][Full Text] [Related]
15. Differences between paired-pulse facilitation and long-term potentiation in the dorsal and ventral hippocampal CA1-prefrontal pathways of rats. Izaki Y; Takita M; Nomura M; Akema T Brain Res; 2003 Nov; 992(1):142-5. PubMed ID: 14604783 [TBL] [Abstract][Full Text] [Related]
16. Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Jorgenson LA; Sun M; O'Connor M; Georgieff MK Hippocampus; 2005; 15(8):1094-102. PubMed ID: 16187331 [TBL] [Abstract][Full Text] [Related]
18. Modulation of extracellular monoamine transmitter concentrations in the hippocampus after weak and strong tetanization of the perforant path in freely moving rats. Neugebauer F; Korz V; Frey JU Brain Res; 2009 Jun; 1273():29-38. PubMed ID: 19345680 [TBL] [Abstract][Full Text] [Related]
19. Muscarinic acetylcholine neurotransmission enhances the late-phase of long-term potentiation in the hippocampal-prefrontal cortex pathway of rats in vivo: a possible involvement of monoaminergic systems. Lopes Aguiar C; Romcy-Pereira RN; Escorsim Szawka R; Galvis-Alonso OY; Anselmo-Franci JA; Pereira Leite J Neuroscience; 2008 Jun; 153(4):1309-19. PubMed ID: 18455317 [TBL] [Abstract][Full Text] [Related]
20. Physiological dissociation in hippocampal subregions in response to amygdala stimulation. Vouimba RM; Richter-Levin G Cereb Cortex; 2005 Nov; 15(11):1815-21. PubMed ID: 15716473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]