These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 16039746)

  • 41. Characterization of water-in-oil microemulsion for oral delivery of earthworm fibrinolytic enzyme.
    Cheng MB; Wang JC; Li YH; Liu XY; Zhang X; Chen DW; Zhou SF; Zhang Q
    J Control Release; 2008 Jul; 129(1):41-8. PubMed ID: 18474405
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin.
    Builders PF; Kunle OO; Okpaku LC; Builders MI; Attama AA; Adikwu MU
    Eur J Pharm Biopharm; 2008 Nov; 70(3):777-83. PubMed ID: 18644444
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization.
    Liu J; Gong T; Wang C; Zhong Z; Zhang Z
    Int J Pharm; 2007 Aug; 340(1-2):153-62. PubMed ID: 17428627
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formulation of a cosurfactant-free O/W microemulsion using nonionic surfactant mixtures.
    Cho YH; Kim S; Bae EK; Mok CK; Park J
    J Food Sci; 2008 Apr; 73(3):E115-21. PubMed ID: 18387105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Intestinal patches with an immobilized solid-in-oil formulation for oral protein delivery.
    Toorisaka E; Watanabe K; Ono H; Hirata M; Kamiya N; Goto M
    Acta Biomater; 2012 Feb; 8(2):653-8. PubMed ID: 21982846
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants.
    Palencia M; Rivas BL
    J Colloid Interface Sci; 2011 Nov; 363(2):682-9. PubMed ID: 21855082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation of prospective plant oil derived micro-emulsion vehicles for drug delivery.
    Gupta S; Sanyal SK; Datta S; Moulik SP
    Indian J Biochem Biophys; 2006 Aug; 43(4):254-7. PubMed ID: 17133772
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alginate microspheres prepared by internal gelation: development and effect on insulin stability.
    Silva CM; Ribeiro AJ; Figueiredo IV; Gonçalves AR; Veiga F
    Int J Pharm; 2006 Mar; 311(1-2):1-10. PubMed ID: 16442757
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Topical delivery of lipophilic drugs from o/w Pickering emulsions.
    Frelichowska J; Bolzinger MA; Pelletier J; Valour JP; Chevalier Y
    Int J Pharm; 2009 Apr; 371(1-2):56-63. PubMed ID: 19135516
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [A new method of avoiding entrainment swelling in liquid surfactant membrane for the determination of trace Hg(II)].
    Yu HF; Xu LL; Ding P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Feb; 25(2):311-3. PubMed ID: 15852886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of an enteric-soluble solid-state emulsion using oily drugs.
    Cui F; Wang Y; Wang J; Feng L; Ning K
    Int J Pharm; 2007 Jun; 338(1-2):152-6. PubMed ID: 17349753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lyophilization of water-in-oil emulsions to prepare phospholipid-based anhydrous reverse micelles for oral peptide delivery.
    Wang T; Wang N; Hao A; He X; Li T; Deng Y
    Eur J Pharm Sci; 2010 Mar; 39(5):373-9. PubMed ID: 20093181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of chitosan succinate and chitosan phthalate microspheres for oral delivery of insulin using response surface methodology.
    Ubaidulla U; Khar RK; Ahmad FJ; Tripathi P
    Pharm Dev Technol; 2009; 14(1):96-105. PubMed ID: 18821127
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs: I. Formulation development.
    Rao SV; Shao J
    Int J Pharm; 2008 Oct; 362(1-2):2-9. PubMed ID: 18650038
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of phase inversion on the formation and stability of one-step multiple emulsions.
    Morais JM; Rocha-Filho PA; Burgess DJ
    Langmuir; 2009 Jul; 25(14):7954-61. PubMed ID: 19441778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel solid lipid nanoparticles as carriers for oral administration of insulin.
    Zhang Z; Lv H; Zhou J
    Pharmazie; 2009 Sep; 64(9):574-8. PubMed ID: 19827297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dry hybrid lipid-silica microcapsules engineered from submicron lipid droplets and nanoparticles as a novel delivery system for poorly soluble drugs.
    Simovic S; Heard P; Hui H; Song Y; Peddie F; Davey AK; Lewis A; Rades T; Prestidge CA
    Mol Pharm; 2009; 6(3):861-72. PubMed ID: 19358600
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Insulin-loaded W/O/W multiple emulsions: comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil.
    Cournarie F; Savelli MP; Rosilio V; Bretez F; Vauthier C; Grossiord JL; Seiller M
    Eur J Pharm Biopharm; 2004 Nov; 58(3):477-82. PubMed ID: 15451521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the stability of insulin delivered through a new glucose-responsive polymeric composite membrane.
    Zhang K; Quan C; Huang H; Taulier N; Wu XY
    J Pharm Pharmacol; 2004 May; 56(5):611-20. PubMed ID: 15142338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.