These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16039907)

  • 21. A southern blot protocol to detect chimeric nuclease-mediated gene repair.
    Rocca CJ; Abdul-Razak HH; Holmes MC; Gregory PD; Yáñez-Muñoz RJ
    Methods Mol Biol; 2014; 1114():325-38. PubMed ID: 24557913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential application of FoldX force field based protein modeling in zinc finger nucleases design.
    He Z; Mei G; Zhao C; Chen Y
    Sci China Life Sci; 2011 May; 54(5):442-9. PubMed ID: 21455692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Donor plasmid design for codon and single base genome editing using zinc finger nucleases.
    Pruett-Miller SM; Davis GD
    Methods Mol Biol; 2015; 1239():219-29. PubMed ID: 25408408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted genome editing in pluripotent stem cells using zinc-finger nucleases.
    Bobis-Wozowicz S; Osiak A; Rahman SH; Cathomen T
    Methods; 2011 Apr; 53(4):339-46. PubMed ID: 21185378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creating zinc finger nucleases using a modular-assembly approach.
    Porteus M
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.prot5530. PubMed ID: 21123417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing gene targeting with designed zinc finger nucleases.
    Bibikova M; Beumer K; Trautman JK; Carroll D
    Science; 2003 May; 300(5620):764. PubMed ID: 12730594
    [No Abstract]   [Full Text] [Related]  

  • 27. Sandwiched zinc-finger nucleases demonstrating higher homologous recombination rates than conventional zinc-finger nucleases in mammalian cells.
    Mori T; Mori K; Tobimatsu T; Sera T
    Bioorg Med Chem Lett; 2014 Feb; 24(3):813-6. PubMed ID: 24412074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting DNA double-strand breaks with TAL effector nucleases.
    Christian M; Cermak T; Doyle EL; Schmidt C; Zhang F; Hummel A; Bogdanove AJ; Voytas DF
    Genetics; 2010 Oct; 186(2):757-61. PubMed ID: 20660643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.
    Jabalameli HR; Zahednasab H; Karimi-Moghaddam A; Jabalameli MR
    Gene; 2015 Mar; 558(1):1-5. PubMed ID: 25536166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in targeted genome engineering in mammalian systems.
    Sun N; Abil Z; Zhao H
    Biotechnol J; 2012 Sep; 7(9):1074-87. PubMed ID: 22777886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta.
    Johnson RA; Gurevich V; Levy AA
    Plant Mol Biol; 2013 Jun; 82(3):207-21. PubMed ID: 23625357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing a three-finger zinc finger nuclease using a GFP reporter system.
    Porteus M
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.prot5531. PubMed ID: 21123418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy.
    Pâques F; Duchateau P
    Curr Gene Ther; 2007 Feb; 7(1):49-66. PubMed ID: 17305528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using zinc finger nucleases for efficient and heritable gene disruption in zebrafish.
    McCammon JM; Amacher SL
    Methods Mol Biol; 2010; 649():281-98. PubMed ID: 20680842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases.
    Kawai N; Ochiai H; Sakuma T; Yamada L; Sawada H; Yamamoto T; Sasakura Y
    Dev Growth Differ; 2012 Jun; 54(5):535-45. PubMed ID: 22640377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homologous recombination contributes to the repair of zinc-finger-nuclease induced double strand breaks in pig primary cells and facilitates recombination with exogenous DNA.
    Klymiuk N; Fezert P; Wünsch A; Kurome M; Kessler B; Wolf E
    J Biotechnol; 2014 May; 177():74-81. PubMed ID: 24613297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome editing in plant cells by zinc finger nucleases.
    Weinthal D; Tovkach A; Zeevi V; Tzfira T
    Trends Plant Sci; 2010 Jun; 15(6):308-21. PubMed ID: 20347379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Positive and negative cooperativity of modularly assembled zinc fingers.
    Imanishi M; Nakamura A; Morisaki T; Futaki S
    Biochem Biophys Res Commun; 2009 Sep; 387(3):440-3. PubMed ID: 19615972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases.
    Cornu TI; Thibodeau-Beganny S; Guhl E; Alwin S; Eichtinger M; Joung JK; Cathomen T
    Mol Ther; 2008 Feb; 16(2):352-8. PubMed ID: 18026168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome engineering with custom recombinases.
    Gaj T; Barbas CF
    Methods Enzymol; 2014; 546():79-91. PubMed ID: 25398336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.