These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16039907)

  • 41. Effects of DNA binding of the zinc finger and linkers for domain fusion on the catalytic activity of sequence-specific chimeric recombinases determined by a facile fluorescent system.
    Nomura W; Masuda A; Ohba K; Urabe A; Ito N; Ryo A; Yamamoto N; Tamamura H
    Biochemistry; 2012 Feb; 51(7):1510-7. PubMed ID: 22304662
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeting DNA to a previously integrated transgenic locus using zinc finger nucleases.
    Strange TL; Petolino JF
    Methods Mol Biol; 2012; 847():391-7. PubMed ID: 22351024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sequence-specific transcriptional repression by KS1, a multiple-zinc-finger-Krüppel-associated box protein.
    Gebelein B; Urrutia R
    Mol Cell Biol; 2001 Feb; 21(3):928-39. PubMed ID: 11154279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells.
    Gaj T; Mercer AC; Sirk SJ; Smith HL; Barbas CF
    Nucleic Acids Res; 2013 Apr; 41(6):3937-46. PubMed ID: 23393187
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter.
    Isalan M; Klug A; Choo Y
    Nat Biotechnol; 2001 Jul; 19(7):656-60. PubMed ID: 11433278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases.
    Sommer D; Peters A; Wirtz T; Mai M; Ackermann J; Thabet Y; Schmidt J; Weighardt H; Wunderlich FT; Degen J; Schultze JL; Beyer M
    Nat Commun; 2014; 5():3045. PubMed ID: 24413636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome editing with engineered nucleases in plants.
    Osakabe Y; Osakabe K
    Plant Cell Physiol; 2015 Mar; 56(3):389-400. PubMed ID: 25416289
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid transcriptional activity in vivo and slow DNA binding in vitro by an artificial multi-zinc finger protein.
    Morisaki T; Imanishi M; Futaki S; Sugiura Y
    Biochemistry; 2008 Sep; 47(38):10171-7. PubMed ID: 18754679
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code.
    Wolfe SA; Greisman HA; Ramm EI; Pabo CO
    J Mol Biol; 1999 Feb; 285(5):1917-34. PubMed ID: 9925775
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lentiviral vectors encoding zinc-finger nucleases specific for the model target locus HPRT1.
    Pelascini LP; Gonçalves MA
    Methods Mol Biol; 2014; 1114():181-99. PubMed ID: 24557904
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage.
    Mani M; Smith J; Kandavelou K; Berg JM; Chandrasegaran S
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1191-1197. PubMed ID: 16043120
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases.
    Brenneman M; Gimble FS; Wilson JH
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3608-12. PubMed ID: 8622983
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Directed Evolution of Targeted Recombinases for Genome Engineering.
    Sirk SJ
    Methods Mol Biol; 2018; 1867():89-102. PubMed ID: 30155817
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells.
    Epinat JC; Arnould S; Chames P; Rochaix P; Desfontaines D; Puzin C; Patin A; Zanghellini A; Pâques F; Lacroix E
    Nucleic Acids Res; 2003 Jun; 31(11):2952-62. PubMed ID: 12771221
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stimulation of homology-directed gene targeting at an endogenous human locus by a nicking endonuclease.
    van Nierop GP; de Vries AA; Holkers M; Vrijsen KR; Gonçalves MA
    Nucleic Acids Res; 2009 Sep; 37(17):5725-36. PubMed ID: 19651880
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Zinc-finger Nucleases: The Next Generation Emerges.
    Cathomen T; Keith Joung J
    Mol Ther; 2008 Jul; 16(7):1200-1207. PubMed ID: 28178480
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gene repair: pointing the finger at genetic disease.
    Cathomen T; Weitzman MD
    Gene Ther; 2005 Oct; 12(19):1415-6. PubMed ID: 17243198
    [No Abstract]   [Full Text] [Related]  

  • 58. Evidence for the liberation of a nuclease from human fingers.
    HOLLEY RW; APGAR J; MERRILL SH
    J Biol Chem; 1961 Jul; 236():PC42-3. PubMed ID: 13715349
    [No Abstract]   [Full Text] [Related]  

  • 59. Errata to "DNA-binding Specificity Is a Major Determinant of the Activity and Toxicity of Zinc-finger Nucleases".
    Mol Ther; 2008 Nov; 16(11):1898. PubMed ID: 28189007
    [No Abstract]   [Full Text] [Related]  

  • 60. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells.
    Durai S; Mani M; Kandavelou K; Wu J; Porteus MH; Chandrasegaran S
    Nucleic Acids Res; 2005; 33(18):5978-90. PubMed ID: 16251401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.