These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16040225)
1. Prediction of gastro-intestinal absorption using multivariate adaptive regression splines. Deconinck E; Xu QS; Put R; Coomans D; Massart DL; Vander Heyden Y J Pharm Biomed Anal; 2005 Oct; 39(5):1021-30. PubMed ID: 16040225 [TBL] [Abstract][Full Text] [Related]
2. Exploration of linear modelling techniques and their combination with multivariate adaptive regression splines to predict gastro-intestinal absorption of drugs. Deconinck E; Coomans D; Vander Heyden Y J Pharm Biomed Anal; 2007 Jan; 43(1):119-30. PubMed ID: 16859855 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of chromatographic descriptors for the prediction of gastro-intestinal absorption of drugs. Deconinck E; Ates H; Callebaut N; Van Gyseghem E; Vander Heyden Y J Chromatogr A; 2007 Jan; 1138(1-2):190-202. PubMed ID: 17097093 [TBL] [Abstract][Full Text] [Related]
4. The evaluation of two-step multivariate adaptive regression splines for chromatographic retention prediction of peptides. Put R; Vander Heyden Y Proteomics; 2007 May; 7(10):1664-77. PubMed ID: 17443841 [TBL] [Abstract][Full Text] [Related]
5. Statistical confidence for variable selection in QSAR models via Monte Carlo cross-validation. Konovalov DA; Sim N; Deconinck E; Vander Heyden Y; Coomans D J Chem Inf Model; 2008 Feb; 48(2):370-83. PubMed ID: 18232680 [TBL] [Abstract][Full Text] [Related]
6. Classification of drugs in absorption classes using the classification and regression trees (CART) methodology. Deconinck E; Hancock T; Coomans D; Massart DL; Heyden YV J Pharm Biomed Anal; 2005 Sep; 39(1-2):91-103. PubMed ID: 15946819 [TBL] [Abstract][Full Text] [Related]
7. A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors. Basak SC; Mills D; Mumtaz MM SAR QSAR Environ Res; 2007; 18(1-2):45-55. PubMed ID: 17365958 [TBL] [Abstract][Full Text] [Related]
8. Passive oral drug absorption can be predicted more reliably by experimental than computational models--fact or myth. Linnankoski J; Ranta VP; Yliperttula M; Urtti A Eur J Pharm Sci; 2008 Jul; 34(2-3):129-39. PubMed ID: 18455374 [TBL] [Abstract][Full Text] [Related]
9. Robust cross-validation of linear regression QSAR models. Konovalov DA; Llewellyn LE; Vander Heyden Y; Coomans D J Chem Inf Model; 2008 Oct; 48(10):2081-94. PubMed ID: 18826208 [TBL] [Abstract][Full Text] [Related]
10. Prediction and mechanistic interpretation of human oral drug absorption using MI-QSAR analysis. Iyer M; Tseng YJ; Senese CL; Liu J; Hopfinger AJ Mol Pharm; 2007; 4(2):218-31. PubMed ID: 17397237 [TBL] [Abstract][Full Text] [Related]
11. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures. Niwa T J Chem Inf Comput Sci; 2003; 43(1):113-9. PubMed ID: 12546543 [TBL] [Abstract][Full Text] [Related]
12. Improvement of multivariate image analysis applied to quantitative structure-activity relationship (QSAR) analysis by using wavelet-principal component analysis ranking variable selection and least-squares support vector machine regression: QSAR study of checkpoint kinase WEE1 inhibitors. Cormanich RA; Goodarzi M; Freitas MP Chem Biol Drug Des; 2009 Feb; 73(2):244-52. PubMed ID: 19207427 [TBL] [Abstract][Full Text] [Related]
13. QSAR modelling for mutagenic potency of heteroaromatic amines by optimal SMILES-based descriptors. Toropov AA; Toropova AP; Benfenati E Chem Biol Drug Des; 2009 Mar; 73(3):301-12. PubMed ID: 19207466 [TBL] [Abstract][Full Text] [Related]
14. SAMFA: simplifying molecular description for 3D-QSAR. Manchester J; CzermiĆski R J Chem Inf Model; 2008 Jun; 48(6):1167-73. PubMed ID: 18503264 [TBL] [Abstract][Full Text] [Related]
15. Predictive model of blood-brain barrier penetration of organic compounds. Ma XL; Chen C; Yang J Acta Pharmacol Sin; 2005 Apr; 26(4):500-12. PubMed ID: 15780201 [TBL] [Abstract][Full Text] [Related]
16. In silico ADME modelling 2: computational models to predict human serum albumin binding affinity using ant colony systems. Gunturi SB; Narayanan R; Khandelwal A Bioorg Med Chem; 2006 Jun; 14(12):4118-29. PubMed ID: 16504519 [TBL] [Abstract][Full Text] [Related]
17. Prediction of drug absorption based on immobilized artificial membrane (IAM) chromatography separation and calculated molecular descriptors. Yen TE; Agatonovic-Kustrin S; Evans AM; Nation RL; Ryand J J Pharm Biomed Anal; 2005 Jul; 38(3):472-8. PubMed ID: 15890485 [TBL] [Abstract][Full Text] [Related]
18. Theoretical investigation of passive intestinal membrane permeability using Monte Carlo method to generate drug-like molecule population. Sugano K Int J Pharm; 2009 May; 373(1-2):55-61. PubMed ID: 19429288 [TBL] [Abstract][Full Text] [Related]
19. QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors based on linear and nonlinear regression methods. Hu R; Doucet JP; Delamar M; Zhang R Eur J Med Chem; 2009 May; 44(5):2158-71. PubMed ID: 19054595 [TBL] [Abstract][Full Text] [Related]
20. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]