BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16040741)

  • 1. Role of voltage-dependent modulation of store Ca2+ release in synchronization of Ca2+ oscillations.
    Imtiaz MS; Katnik CP; Smith DW; van Helden DF
    Biophys J; 2006 Jan; 90(1):1-23. PubMed ID: 16040741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle.
    Imtiaz MS; von der Weid PY; van Helden DF
    FEBS J; 2010 Jan; 277(2):278-85. PubMed ID: 19895582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of gap junction to Ca(2+) and to IP(3) on the synchronization of intercellular calcium oscillations in hepatocytes.
    Wu D; Jia Y; Zhan X; Yang L; Liu Q
    Biophys Chem; 2005 Feb; 113(2):145-54. PubMed ID: 15617821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pacemaking through Ca2+ stores interacting as coupled oscillators via membrane depolarization.
    Imtiaz MS; Zhao J; Hosaka K; von der Weid PY; Crowe M; van Helden DF
    Biophys J; 2007 Jun; 92(11):3843-61. PubMed ID: 17351003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fertilization and inositol 1,4,5-trisphosphate (IP3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs.
    Malcuit C; Knott JG; He C; Wainwright T; Parys JB; Robl JM; Fissore RA
    Biol Reprod; 2005 Jul; 73(1):2-13. PubMed ID: 15744020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of calcium waves in pancreatic and parotid acinar cells.
    Sneyd J; Tsaneva-Atanasova K; Bruce JI; Straub SV; Giovannucci DR; Yule DI
    Biophys J; 2003 Sep; 85(3):1392-405. PubMed ID: 12944257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma.
    Espelt MV; Estevez AY; Yin X; Strange K
    J Gen Physiol; 2005 Oct; 126(4):379-92. PubMed ID: 16186564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Junctional membrane inositol 1,4,5-trisphosphate receptor complex coordinates sensitization of the silent EGF-induced Ca2+ signaling.
    Hur EM; Park YS; Huh YH; Yoo SH; Woo KC; Choi BH; Kim KT
    J Cell Biol; 2005 May; 169(4):657-67. PubMed ID: 15911880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between inositol 1,4,5-trisphosphate receptors and ryanodine receptors in smooth muscle: one store or two?
    McGeown JG
    Cell Calcium; 2004 Jun; 35(6):613-9. PubMed ID: 15110151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic model of the type-2 inositol trisphosphate receptor.
    Sneyd J; Dufour JF
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):2398-403. PubMed ID: 11842185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of inositol 1,4,5-trisphosphate receptor-mediated intracellular stochastic calcium oscillations on activation of glycogen phosphorylase.
    Wu D; Jia Y; Rozi A
    Biophys Chem; 2004 Jul; 110(1-2):179-90. PubMed ID: 15223153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca(2+)-sensor region of IP(3) receptor controls intracellular Ca(2+) signaling.
    Miyakawa T; Mizushima A; Hirose K; Yamazawa T; Bezprozvanny I; Kurosaki T; Iino M
    EMBO J; 2001 Apr; 20(7):1674-80. PubMed ID: 11285231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-induced Ca2+ oscillations through the regulation of the inositol 1,4,5-trisphosphate-gated Ca2+ channel: an allosteric model.
    Laurent M; Claret M
    J Theor Biol; 1997 Jun; 186(3):307-26. PubMed ID: 9219669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The predominant role of IP₃ type 1 receptors in activation of store-operated Ca²+ entry in liver cells.
    Jones L; Ma L; Castro J; Litjens T; Barritt GJ; Rychkov GY
    Biochim Biophys Acta; 2011 Mar; 1808(3):745-51. PubMed ID: 21182823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study on the role of Ca(2+)-activated K+ channels in the regulation of hormone-induced Ca2+ oscillations and their synchronization in adjacent cells.
    Catacuzzeno L; Fioretti B; Franciolini F
    J Theor Biol; 2012 Sep; 309():103-12. PubMed ID: 22659037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias.
    Zima AV; Blatter LA
    J Physiol; 2004 Mar; 555(Pt 3):607-15. PubMed ID: 14754996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated luminal and cytosolic aspects of the calcium release control.
    Baran I
    Biophys J; 2003 Mar; 84(3):1470-85. PubMed ID: 12609854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium waves in intact guinea pig gallbladder smooth muscle cells.
    Balemba OB; Heppner TJ; Bonev AD; Nelson MT; Mawe GM
    Am J Physiol Gastrointest Liver Physiol; 2006 Oct; 291(4):G717-27. PubMed ID: 16710055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the statistics of elementary calcium release events.
    Ullah G; Jung P
    Biophys J; 2006 May; 90(10):3485-95. PubMed ID: 16513779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Ca2+ release-activated Ca2+ channels by INAD and Ca2+ influx factor.
    Su Z; Barker DS; Csutora P; Chang T; Shoemaker RL; Marchase RB; Blalock JE
    Am J Physiol Cell Physiol; 2003 Feb; 284(2):C497-505. PubMed ID: 12388110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.