These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 160408)
1. Chemiosmotic coupling in Methanobacterium thermoautotrophicum: hydrogen-dependent adenosine 5'-triphosphate synthesis by subcellular particles. Doddema HJ; van der Drift C; Vogels GD; Veenhuis M J Bacteriol; 1979 Dec; 140(3):1081-9. PubMed ID: 160408 [TBL] [Abstract][Full Text] [Related]
2. Evidence for an internal electrochemical proton gradient in Methanobacterium thermoautotrophicum. Sauer FD; Erfle JD; Mahadevan S J Biol Chem; 1981 Oct; 256(19):9843-8. PubMed ID: 7275982 [No Abstract] [Full Text] [Related]
3. ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum. Doddema HJ; Hutten TJ; van der Drift C; Vogels GD J Bacteriol; 1978 Oct; 136(1):19-23. PubMed ID: 30747 [TBL] [Abstract][Full Text] [Related]
4. Adenosine 5'-triphosphate synthesis energized by an artificially imposed membrane potential in membrane vesicles of Escherichia coli. Tsuchiya T; Rosen BP J Bacteriol; 1976 Jul; 127(1):154-61. PubMed ID: 6430 [TBL] [Abstract][Full Text] [Related]
5. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli. Wilson DM; Alderette JF; Maloney PC; Wilson TH J Bacteriol; 1976 Apr; 126(1):327-37. PubMed ID: 4427 [TBL] [Abstract][Full Text] [Related]
6. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase. Hochstein LI FEMS Microbiol Lett; 1992 Oct; 76(1-2):155-9. PubMed ID: 11537859 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical potential of protons in vesicles reconstituted from purified, proton-translocating adenosine triphosphatase. Sone N; Yoshida M; Hirata H; Okamoto H; Kagawa Y J Membr Biol; 1976 Dec; 30(2):121-34. PubMed ID: 13221 [TBL] [Abstract][Full Text] [Related]
8. Energy-linked transhydrogenase. Effects of valinomycin and nigericin on the ATP-driven transhydrogenase reaction catalyzed by reconstituted transhydrogenase-ATPase vesicles. Eytan GD; Carlenor E; Rydström J J Biol Chem; 1990 Aug; 265(22):12949-54. PubMed ID: 2142942 [TBL] [Abstract][Full Text] [Related]
9. The ATP-driven primary Na+ pump in subcellular vesicles of Vibrio alginolyticus. Dibrov PA; Skulachev VP; Sokolov MV; Verkhovskaya ML FEBS Lett; 1988 Jun; 233(2):355-8. PubMed ID: 2968282 [TBL] [Abstract][Full Text] [Related]
10. Localization and possible role of an adenosine triphosphatase in Chlorobium thiosulfatophilum. Burns DD; Midgley M Eur J Biochem; 1976 Aug; 67(2):323-33. PubMed ID: 134890 [TBL] [Abstract][Full Text] [Related]
11. ATP synthesis driven by a protonmotive force in Streptococcus lactis. Maloney PC; Wilson TH J Membr Biol; 1975-1976; 25(3-4):285-310. PubMed ID: 3650 [TBL] [Abstract][Full Text] [Related]
12. Reconstitution of the proton-translocating adenosine triphosphatase of yeast plasma membranes. Malpartida F; Serrano R J Biol Chem; 1981 May; 256(9):4175-7. PubMed ID: 6163779 [TBL] [Abstract][Full Text] [Related]
13. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane. Schönheit P; Beimborn DB Eur J Biochem; 1985 May; 148(3):545-50. PubMed ID: 2986965 [TBL] [Abstract][Full Text] [Related]
14. Existence of an adenosine 5'-triphosphate dependent proton translocase in bovine neurosecretory granule membrane. Scherman D; Nordmann J; Henry JP Biochemistry; 1982 Feb; 21(4):687-94. PubMed ID: 6462172 [TBL] [Abstract][Full Text] [Related]
15. Na(+)-driven ATP synthesis in Methanobacterium thermoautotrophicum and its differentiation from H(+)-driven ATP synthesis by rhodamine 6G. Smigán P; Majerník A; Greksák M FEBS Lett; 1994 Aug; 349(3):424-8. PubMed ID: 8050608 [TBL] [Abstract][Full Text] [Related]
16. Na(+)-driven ATP synthesis in Methanobacterium thermoautotrophicum and its differentiation from H(+)-driven ATP synthesis by rhodamine 6G. Smigán P; Majerník A; Greksák M FEBS Lett; 1994 Jun; 347(2-3):190-4. PubMed ID: 8034000 [TBL] [Abstract][Full Text] [Related]
17. [Energy transformation coupled to formate oxidation during anaerobic fermentation]. Akopian M; Poladian A; Bagramian K Biofizika; 2006; 51(3):466-71. PubMed ID: 16808345 [TBL] [Abstract][Full Text] [Related]
18. Potassium transport coupled to ATP hydrolysis in reconstituted proteoliposomes of yeast plasma membrane ATPase. Villalobo A J Biol Chem; 1982 Feb; 257(4):1824-8. PubMed ID: 6120168 [TBL] [Abstract][Full Text] [Related]
19. Membrane bioenergetic parameters in uncoupler-resistant mutants of Bacillus megaterium. Decker SJ; Lang DR J Biol Chem; 1978 Oct; 253(19):6738-43. PubMed ID: 29041 [TBL] [Abstract][Full Text] [Related]
20. Energy coupling in the active transport of amino acids by bacteriohodopsin-containing cells of Halobacterium holobium. Hubbard JS; Rinehart CA; Baker RA J Bacteriol; 1976 Jan; 125(1):181-90. PubMed ID: 128552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]