These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 16041072)
1. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme. Stec B; Holtz KM; Wojciechowski CL; Kantrowitz ER Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1072-9. PubMed ID: 16041072 [TBL] [Abstract][Full Text] [Related]
2. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1. Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158 [TBL] [Abstract][Full Text] [Related]
3. Inhibitor-resistant class A beta-lactamases: consequences of the Ser130-to-Gly mutation seen in Apo and tazobactam structures of the SHV-1 variant. Sun T; Bethel CR; Bonomo RA; Knox JR Biochemistry; 2004 Nov; 43(44):14111-7. PubMed ID: 15518561 [TBL] [Abstract][Full Text] [Related]
4. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
5. X-ray structure of the Asn276Asp variant of the Escherichia coli TEM-1 beta-lactamase: direct observation of electrostatic modulation in resistance to inactivation by clavulanic acid. Swarén P; Golemi D; Cabantous S; Bulychev A; Maveyraud L; Mobashery S; Samama JP Biochemistry; 1999 Jul; 38(30):9570-6. PubMed ID: 10423234 [TBL] [Abstract][Full Text] [Related]
6. Elimination of the hydrolytic water molecule in a class A beta-lactamase mutant: crystal structure and kinetics. Zawadzke LE; Chen CC; Banerjee S; Li Z; Wäsch S; Kapadia G; Moult J; Herzberg O Biochemistry; 1996 Dec; 35(51):16475-82. PubMed ID: 8987980 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102. Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886 [TBL] [Abstract][Full Text] [Related]
8. Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain. Stojanoski V; Adamski CJ; Hu L; Mehta SC; Sankaran B; Zwart P; Prasad BV; Palzkill T Biochemistry; 2016 May; 55(17):2479-90. PubMed ID: 27073009 [TBL] [Abstract][Full Text] [Related]
9. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis. Li Z; Rasmussen BA; Herzberg O Protein Sci; 1999 Jan; 8(1):249-52. PubMed ID: 10210203 [TBL] [Abstract][Full Text] [Related]
10. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase. Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Ibuka AS; Ishii Y; Galleni M; Ishiguro M; Yamaguchi K; Frère JM; Matsuzawa H; Sakai H Biochemistry; 2003 Sep; 42(36):10634-43. PubMed ID: 12962487 [TBL] [Abstract][Full Text] [Related]
12. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99. Adediran SA; Zhang Z; Nukaga M; Palzkill T; Pratt RF Biochemistry; 2005 May; 44(20):7543-52. PubMed ID: 15895997 [TBL] [Abstract][Full Text] [Related]
13. Circularly permuted beta-lactamase from Staphylococcus aureus PC1. Pieper U; Hayakawa K; Li Z; Herzberg O Biochemistry; 1997 Jul; 36(29):8767-74. PubMed ID: 9220963 [TBL] [Abstract][Full Text] [Related]
14. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams. Wang X; Minasov G; Shoichet BK Proteins; 2002 Apr; 47(1):86-96. PubMed ID: 11870868 [TBL] [Abstract][Full Text] [Related]
15. Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase. Chantalat L; Duée E; Galleni M; Frère JM; Dideberg O Protein Sci; 2000 Jul; 9(7):1402-6. PubMed ID: 10933508 [TBL] [Abstract][Full Text] [Related]
16. Modeling study on a hydrolytic mechanism of class A beta-lactamases. Ishiguro M; Imajo S J Med Chem; 1996 May; 39(11):2207-18. PubMed ID: 8667364 [TBL] [Abstract][Full Text] [Related]
17. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Ma L; Kantrowitz ER Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases. Maveyraud L; Pratt RF; Samama JP Biochemistry; 1998 Feb; 37(8):2622-8. PubMed ID: 9485412 [TBL] [Abstract][Full Text] [Related]
19. Structures of the acyl-enzyme complexes of the Staphylococcus aureus beta-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine. Chen CC; Herzberg O Biochemistry; 2001 Feb; 40(8):2351-8. PubMed ID: 11327855 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Usher KC; Blaszczak LC; Weston GS; Shoichet BK; Remington SJ Biochemistry; 1998 Nov; 37(46):16082-92. PubMed ID: 9819201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]