These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 16041482)

  • 1. Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters.
    Ishima R; Torchia DA
    J Biomol NMR; 2005 May; 32(1):41-54. PubMed ID: 16041482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of optimized chemical-exchange parameters derived by fitting CPMG R2 dispersion profiles when R2(0a) not = R2(0b).
    Ishima R; Torchia DA
    J Biomol NMR; 2006 Apr; 34(4):209-19. PubMed ID: 16645811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes.
    Myint W; Cai Y; Schiffer CA; Ishima R
    J Biomol NMR; 2012 May; 53(1):13-23. PubMed ID: 22466935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments.
    Myint W; Ishima R
    J Biomol NMR; 2009 Sep; 45(1-2):207-16. PubMed ID: 19618276
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Kumari P; Frey L; Sobol A; Lakomek NA; Riek R
    J Biomol NMR; 2018 Dec; 72(3-4):125-137. PubMed ID: 30306288
    [No Abstract]   [Full Text] [Related]  

  • 6. CPMG sequences with enhanced sensitivity to chemical exchange.
    Wang C; Grey MJ; Palmer AG
    J Biomol NMR; 2001 Dec; 21(4):361-6. PubMed ID: 11824755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR.
    Vallurupalli P; Bouvignies G; Kay LE
    J Phys Chem B; 2011 Dec; 115(49):14891-900. PubMed ID: 22077866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of specific protein association by 15N CPMG relaxation dispersion NMR: the GB1(A34F) monomer-dimer equilibrium.
    Jee J; Ishima R; Gronenborn AM
    J Phys Chem B; 2008 May; 112(19):6008-12. PubMed ID: 18004837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algebraic expressions for Carr-Purcell-Meiboom-Gill relaxation dispersion for N-site chemical exchange.
    Koss H; Rance M; Palmer AG
    J Magn Reson; 2020 Dec; 321():106846. PubMed ID: 33128917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transverse 1H cross relaxation in 1H-15N correlated 1H CPMG experiments.
    Ishima R; Louis JM; Torchia DA
    J Magn Reson; 1999 Mar; 137(1):289-92. PubMed ID: 10053163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins.
    Lundström P; Akke M
    J Biomol NMR; 2005 Jun; 32(2):163-73. PubMed ID: 16034667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).
    Otten R; Villali J; Kern D; Mulder FA
    J Am Chem Soc; 2010 Dec; 132(47):17004-14. PubMed ID: 21058670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations.
    Hass MA; Thuesen MH; Christensen HE; Led JJ
    J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phase cycle scheme that significantly suppresses offset-dependent artifacts in the R2-CPMG 15N relaxation experiment.
    Yip GN; Zuiderweg ER
    J Magn Reson; 2004 Nov; 171(1):25-36. PubMed ID: 15504678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST.
    Yuwen T; Sekhar A; Kay LE
    J Biomol NMR; 2016 Aug; 65(3-4):143-156. PubMed ID: 27473413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonyl carbon transverse relaxation dispersion measurements and ms-micros timescale motion in a protein hydrogen bond network.
    Ishima R; Baber J; Louis JM; Torchia DA
    J Biomol NMR; 2004 Jun; 29(2):187-98. PubMed ID: 15014232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comprehensive analysis of multifield 15N relaxation parameters in proteins: determination of 15N chemical shift anisotropies.
    Canet D; Barthe P; Mutzenhardt P; Roumestand C
    J Am Chem Soc; 2001 May; 123(19):4567-76. PubMed ID: 11457243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Expressions for Carr-Purcell-Meiboom-Gill Relaxation Dispersion for N-Site Chemical Exchange.
    Koss H; Rance M; Palmer AG
    Biochemistry; 2018 Aug; 57(31):4753-4763. PubMed ID: 30040382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An exact solution for R2,eff in CPMG experiments in the case of two site chemical exchange.
    Baldwin AJ
    J Magn Reson; 2014 Jul; 244(100):114-24. PubMed ID: 24852115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins.
    Hansen DF; Vallurupalli P; Kay LE
    J Phys Chem B; 2008 May; 112(19):5898-904. PubMed ID: 18001083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.