These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 16041482)

  • 41. Optimized selection of slow-relaxing
    Tugarinov V; Karamanos TK; Clore GM
    J Biomol NMR; 2020 Dec; 74(12):673-680. PubMed ID: 33006092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A methyl
    Gopalan AB; Yuwen T; Kay LE; Vallurupalli P
    J Biomol NMR; 2018 Oct; 72(1-2):79-91. PubMed ID: 30276607
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Probing Conformational Exchange in Weakly Interacting, Slowly Exchanging Protein Systems via Off-Resonance R
    Yuwen T; Brady JP; Kay LE
    J Am Chem Soc; 2018 Feb; 140(6):2115-2126. PubMed ID: 29303268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of geometric approximation to the CPMG experiment: Two- and three-site exchange.
    Chao FA; Byrd RA
    J Magn Reson; 2017 Apr; 277():8-14. PubMed ID: 28189995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of chemical exchange in tryptophan-albumin solution through (19)F multicomponent transverse relaxation dispersion analysis.
    Lin PC
    J Biomol NMR; 2015 Jun; 62(2):121-7. PubMed ID: 25900068
    [TBL] [Abstract][Full Text] [Related]  

  • 47. C-terminal domain of insulin-like growth factor (IGF) binding protein 6: conformational exchange and its correlation with IGF-II binding.
    Yao S; Headey SJ; Keizer DW; Bach LA; Norton RS
    Biochemistry; 2004 Sep; 43(35):11187-95. PubMed ID: 15366928
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of chemical exchange on transverse relaxation at low and moderate magnetic field strengths for sugar solutions representative of fruit tissues analyzed by simulation and MRI experiments.
    Leforestier R; Mariette F; Musse M
    J Magn Reson; 2021 Jan; 322():106872. PubMed ID: 33232906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins.
    Liu M; Kim Y; Hilty C
    Anal Chem; 2017 Sep; 89(17):9154-9158. PubMed ID: 28714674
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Off-resonance effects in 15N T2 CPMG measurements.
    Korzhnev DM; Tischenko EV; Arseniev AS
    J Biomol NMR; 2000 Jul; 17(3):231-7. PubMed ID: 10959630
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.
    Chevelkov V; Fink U; Reif B
    J Am Chem Soc; 2009 Oct; 131(39):14018-22. PubMed ID: 19743845
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurement of signs of chemical shift differences between ground and excited protein states: a comparison between H(S/M)QC and R1rho methods.
    Auer R; Hansen DF; Neudecker P; Korzhnev DM; Muhandiram DR; Konrat R; Kay LE
    J Biomol NMR; 2010 Mar; 46(3):205-16. PubMed ID: 20033258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of ligand binding and protein dynamics of human retinoid X receptor alpha ligand-binding domain by nuclear magnetic resonance.
    Lu J; Cistola DP; Li E
    Biochemistry; 2006 Feb; 45(6):1629-39. PubMed ID: 16460010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microsecond protein dynamics measured by 13Calpha rotating-frame spin relaxation.
    Lundström P; Akke M
    Chembiochem; 2005 Sep; 6(9):1685-92. PubMed ID: 16028301
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of methyl rotation axis order parameters derived from model-free analyses of (2)H and (13)C longitudinal and transverse relaxation rates measured in the same protein sample.
    Ishima R; Petkova AP; Louis JM; Torchia DA
    J Am Chem Soc; 2001 Jun; 123(25):6164-71. PubMed ID: 11414851
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of protein 15N relaxation times by inverse Laplace transformation.
    Koskela H; Kilpeläinen I; Heikkinen S
    Magn Reson Chem; 2004 Jan; 42(1):61-5. PubMed ID: 14745818
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of slow-pulsing artifacts in in-phase
    Chatterjee SD; Ubbink M; van Ingen H
    J Biomol NMR; 2018 Jun; 71(2):69-77. PubMed ID: 29860650
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An exchange-free measure of 15N transverse relaxation: an NMR spectroscopy application to the study of a folding intermediate with pervasive chemical exchange.
    Hansen DF; Yang D; Feng H; Zhou Z; Wiesner S; Bai Y; Kay LE
    J Am Chem Soc; 2007 Sep; 129(37):11468-79. PubMed ID: 17722922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Faithful estimation of dynamics parameters from CPMG relaxation dispersion measurements.
    Kovrigin EL; Kempf JG; Grey MJ; Loria JP
    J Magn Reson; 2006 May; 180(1):93-104. PubMed ID: 16458551
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration.
    Fushman D; Cahill S; Cowburn D
    J Mol Biol; 1997 Feb; 266(1):173-94. PubMed ID: 9054979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.