These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16041485)

  • 1. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements.
    Eghbalnia HR; Wang L; Bahrami A; Assadi A; Markley JL
    J Biomol NMR; 2005 May; 32(1):71-81. PubMed ID: 16041485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nearest-neighbor effects on backbone alpha and beta carbon chemical shifts in proteins.
    Wang L; Eghbalnia HR; Markley JL
    J Biomol NMR; 2007 Nov; 39(3):247-57. PubMed ID: 17899393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the redox state and secondary structure of cysteine residues using multi-dimensional classification analysis of NMR chemical shifts.
    Wang CC; Lai WC; Chuang WJ
    J Biomol NMR; 2016 Sep; 66(1):55-68. PubMed ID: 27613298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information.
    Hudáky P; Perczel A
    J Comput Chem; 2005 Oct; 26(13):1307-17. PubMed ID: 15999335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein secondary structure prediction using NMR chemical shift data.
    Zhao Y; Alipanahi B; Li SC; Li M
    J Bioinform Comput Biol; 2010 Oct; 8(5):867-84. PubMed ID: 20981892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using neural network predicted secondary structure information in automatic protein NMR assignment.
    Choy WY; Sanctuary BC; Zhu G
    J Chem Inf Comput Sci; 1997; 37(6):1086-94. PubMed ID: 9392858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts.
    Kumar AV; Ali RF; Cao Y; Krishnan VV
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1545-52. PubMed ID: 25758094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and reliable protein structure determination via chemical shift threading.
    Hafsa NE; Berjanskii MV; Arndt D; Wishart DS
    J Biomol NMR; 2018 Jan; 70(1):33-51. PubMed ID: 29196969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A probabilistic model for secondary structure prediction from protein chemical shifts.
    Mechelke M; Habeck M
    Proteins; 2013 Jun; 81(6):984-93. PubMed ID: 23292699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate and automated classification of protein secondary structure with PsiCSI.
    Hung LH; Samudrala R
    Protein Sci; 2003 Feb; 12(2):288-95. PubMed ID: 12538892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinement by shifting secondary structure elements improves sequence alignments.
    Tong J; Pei J; Otwinowski Z; Grishin NV
    Proteins; 2015 Mar; 83(3):411-27. PubMed ID: 25546158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.
    Hafsa NE; Arndt D; Wishart DS
    Nucleic Acids Res; 2015 Jul; 43(W1):W370-7. PubMed ID: 25979265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scoring predictive models using a reduced representation of proteins: model and energy definition.
    Fogolari F; Pieri L; Dovier A; Bortolussi L; Giugliarelli G; Corazza A; Esposito G; Viglino P
    BMC Struct Biol; 2007 Mar; 7():15. PubMed ID: 17378941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.
    Labudde D; Leitner D; Krüger M; Oschkinat H
    J Biomol NMR; 2003 Jan; 25(1):41-53. PubMed ID: 12566998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure.
    Cheung MS; Maguire ML; Stevens TJ; Broadhurst RW
    J Magn Reson; 2010 Feb; 202(2):223-33. PubMed ID: 20015671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
    Shen Y; Delaglio F; Cornilescu G; Bax A
    J Biomol NMR; 2009 Aug; 44(4):213-23. PubMed ID: 19548092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts.
    Jensen MR; Salmon L; Nodet G; Blackledge M
    J Am Chem Soc; 2010 Feb; 132(4):1270-2. PubMed ID: 20063887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neighboring residue effects in terminally blocked dipeptides: implications for residual secondary structures in intrinsically unfolded/disordered proteins.
    Jung YS; Oh KI; Hwang GS; Cho M
    Chirality; 2014 Sep; 26(9):443-52. PubMed ID: 24453185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology.
    Shen Y; Bax A
    J Biomol NMR; 2007 Aug; 38(4):289-302. PubMed ID: 17610132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins.
    Avbelj F; Fele L
    J Mol Biol; 1998 Jun; 279(3):665-84. PubMed ID: 9641985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.