These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16041533)

  • 1. Viscosity-mediated motion coupling between pairs of trichobothria on the leg of the spider Cupiennius salei.
    Bathellier B; Barth FG; Albert JT; Humphrey JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Aug; 191(8):733-46. PubMed ID: 16041533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of cricket and spider motion-sensing hairs to airflow pulsations.
    Kant R; Humphrey JA
    J R Soc Interface; 2009 Nov; 6(40):1047-64. PubMed ID: 19324674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spider mechanoreceptors.
    Barth FG
    Curr Opin Neurobiol; 2004 Aug; 14(4):415-22. PubMed ID: 15321061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei).
    McConney ME; Schaber CF; Julian MD; Eberhardt WC; Humphrey JA; Barth FG; Tsukruk VV
    J R Soc Interface; 2009 Aug; 6(37):681-94. PubMed ID: 19091682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between arthropod filiform hairs in a fluid environment.
    Cummins B; Gedeon T; Klapper I; Cortez R
    J Theor Biol; 2007 Jul; 247(2):266-80. PubMed ID: 17434184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to catch the wind: spider hairs specialized for sensing the movement of air.
    Barth FG
    Naturwissenschaften; 2000 Feb; 87(2):51-8. PubMed ID: 10663135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling arthropod filiform hair motion using the penalty immersed boundary method.
    Heys JJ; Gedeon T; Knott BC; Kim Y
    J Biomech; 2008; 41(5):977-84. PubMed ID: 18255073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonistic signals received by an arthropod filiform hair allude to the prevalence of near-field sound communication.
    Santer RD; Hebets EA
    Proc Biol Sci; 2008 Feb; 275(1633):363-8. PubMed ID: 18055386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hair canopy of cricket sensory system tuned to predator signals.
    Magal C; Dangles O; Caparroy P; Casas J
    J Theor Biol; 2006 Aug; 241(3):459-66. PubMed ID: 16427653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages.
    Steinmann T; Casas J; Krijnen G; Dangles O
    J Exp Biol; 2006 Nov; 209(Pt 21):4398-408. PubMed ID: 17050855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogeny of air-motion sensing in cricket.
    Dangles O; Pierre D; Magal C; Vannier F; Casas J
    J Exp Biol; 2006 Nov; 209(Pt 21):4363-70. PubMed ID: 17050851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for air movement signals in the agonistic behaviour of a nocturnal arachnid (order Amblypygi).
    Santer RD; Hebets EA
    PLoS One; 2011; 6(8):e22473. PubMed ID: 21853035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational fluid dynamics model of viscous coupling of hairs.
    Lewin GC; Hallam J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Jun; 196(6):385-95. PubMed ID: 20383713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical and physiological observations on the organization of mechanoreceptors and local interneurons in the central nervous system of the wandering spider Cupiennius salei.
    Gronenberg W
    Cell Tissue Res; 1989 Oct; 258(1):163-75. PubMed ID: 2805041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary changes in sensory precursor formation in arthropods: embryonic development of leg sensilla in the spider Cupiennius salei.
    Stollewerk A; Seyfarth EA
    Dev Biol; 2008 Jan; 313(2):659-73. PubMed ID: 18054903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing fluctuating airflow with spider silk.
    Zhou J; Miles RN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12120-12125. PubMed ID: 29087323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency.
    Bathellier B; Steinmann T; Barth FG; Casas J
    J R Soc Interface; 2012 Jun; 9(71):1131-43. PubMed ID: 22171067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arthropod mechanoreceptive hairs: modeling the directionality of the joint.
    Dechant HE; Hössl B; Rammerstorfer FG; Barth FG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1271-8. PubMed ID: 16896686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colour blindness of the movement-detecting system of the spider Cupiennius salei.
    Orlando E; Schmid A
    J Exp Biol; 2011 Feb; 214(Pt 4):546-50. PubMed ID: 21270302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active sensing in a freely walking spider: look where to go.
    Schmid A; Trischler C
    J Insect Physiol; 2011 Apr; 57(4):494-500. PubMed ID: 21281645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.