BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 16041995)

  • 1. Statistical encoding model for a primary motor cortical brain-machine interface.
    Shoham S; Paninski LM; Fellows MR; Hatsopoulos NG; Donoghue JP; Normann RA
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1312-22. PubMed ID: 16041995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robustness of neuroprosthetic decoding algorithms.
    Serruya M; Hatsopoulos N; Fellows M; Paninski L; Donoghue J
    Biol Cybern; 2003 Mar; 88(3):219-28. PubMed ID: 12647229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian population decoding of motor cortical activity using a Kalman filter.
    Wu W; Gao Y; Bienenstock E; Donoghue JP; Black MJ
    Neural Comput; 2006 Jan; 18(1):80-118. PubMed ID: 16354382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal tuning of motor cortical neurons for hand position and velocity.
    Paninski L; Fellows MR; Hatsopoulos NG; Donoghue JP
    J Neurophysiol; 2004 Jan; 91(1):515-32. PubMed ID: 13679402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and decoding motor cortical activity using a switching Kalman filter.
    Wu W; Black MJ; Mumford D; Gao Y; Bienenstock E; Donoghue JP
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):933-42. PubMed ID: 15188861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces.
    Wang Y; Principe JC; Sanchez JC
    Neural Netw; 2009; 22(5-6):781-90. PubMed ID: 19615852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex.
    Churchland MM; Shenoy KV
    J Neurophysiol; 2007 Jun; 97(6):4235-57. PubMed ID: 17376854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpreting spatial and temporal neural activity through a recurrent neural network brain-machine interface.
    Sanchez JC; Erdogmus D; Nicolelis MA; Wessberg J; Principe JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):213-9. PubMed ID: 16003902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces.
    Wang Y; Principe JC
    J Neural Eng; 2010 Oct; 7(5):056010. PubMed ID: 20841635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection and parameterization of cortical neurons for neuroprosthetic control.
    Wahnoun R; He J; Helms Tillery SI
    J Neural Eng; 2006 Jun; 3(2):162-71. PubMed ID: 16705272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascertaining the importance of neurons to develop better brain-machine interfaces.
    Sanchez JC; Carmena JM; Lebedev MA; Nicolelis MA; Harris JG; Principe JC
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):943-53. PubMed ID: 15188862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On variability and use of rat primary motor cortex responses in behavioral task discrimination.
    Jensen W; Rousche PJ
    J Neural Eng; 2006 Mar; 3(1):L7-13. PubMed ID: 16510934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.
    Herzfeld DJ; Beardsley SA
    J Neural Eng; 2010 Aug; 7(4):046012. PubMed ID: 20644245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces.
    Kim SP; Sanchez JC; Rao YN; Erdogmus D; Carmena JM; Lebedev MA; Nicolelis MA; Principe JC
    J Neural Eng; 2006 Jun; 3(2):145-61. PubMed ID: 16705271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural ensemble activity from multiple brain regions predicts kinematic and dynamic variables in a multiple force field reaching task.
    Francis JT; Chapin JK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):172-4. PubMed ID: 16792286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Offline decoding of end-point forces using neural ensembles: application to a brain-machine interface.
    Gupta R; Ashe J
    IEEE Trans Neural Syst Rehabil Eng; 2009 Jun; 17(3):254-62. PubMed ID: 19497832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based neural decoding of reaching movements: a maximum likelihood approach.
    Kemere C; Shenoy KV; Meng TH
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):925-32. PubMed ID: 15188860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats.
    Zhou F; Liu J; Yu Y; Tian X; Liu H; Hao Y; Zhang S; Chen W; Dai J; Zheng X
    J Neurosci Methods; 2010 Jan; 185(2):299-306. PubMed ID: 19879294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic trajectory decoding using motor cortical ensembles.
    Fagg AH; Ojakangas GW; Miller LE; Hatsopoulos NG
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):487-96. PubMed ID: 19666343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.