BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16041998)

  • 1. An automated approach for analyzing D-periods in collagen fibril images.
    Gkoumplias V; Zervakis M; Tzaphlidou M
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1345-7. PubMed ID: 16041998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of fibrous proteins from electron microscopy images.
    Zervakis M; Gkoumplias V; Tzaphlidou M
    Med Eng Phys; 2005 Oct; 27(8):655-67. PubMed ID: 15893951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of type I and type III heterotypic collagen fibrils: an X-ray diffraction study.
    Cameron GJ; Alberts IL; Laing JH; Wess TJ
    J Struct Biol; 2002; 137(1-2):15-22. PubMed ID: 12064929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen types I, III, and V constitute the thick collagen fibrils of the mouse decidua.
    Spiess K; Zorn TM
    Microsc Res Tech; 2007 Jan; 70(1):18-25. PubMed ID: 17019696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains.
    Ortolani F; Giordano M; Marchini M
    Biopolymers; 2000 Nov; 54(6):448-63. PubMed ID: 10951330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpreting second-harmonic generation images of collagen I fibrils.
    Williams RM; Zipfel WR; Webb WW
    Biophys J; 2005 Feb; 88(2):1377-86. PubMed ID: 15533922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron microscopy of collagen fibril structure in vitro and in vivo including three-dimensional reconstruction.
    Starborg T; Lu Y; Kadler KE; Holmes DF
    Methods Cell Biol; 2008; 88():319-45. PubMed ID: 18617041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aged skin: detection of alterations of major collagen types ratio by image processing of electron-optical data.
    Tzaphlidou M; Zervakis M
    Micron; 2004; 35(3):221-5. PubMed ID: 15036276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aligned fibrillar collagen matrices obtained by shear flow deposition.
    Lanfer B; Freudenberg U; Zimmermann R; Stamov D; Körber V; Werner C
    Biomaterials; 2008 Oct; 29(28):3888-95. PubMed ID: 18606448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled self-assembly of collagen fibrils by an automated dialysis system.
    Strasser S; Zink A; Heckl WM; Thalhammer S
    J Biomech Eng; 2006 Oct; 128(5):792-6. PubMed ID: 16995769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy.
    Lin AC; Goh MC
    Proteins; 2002 Nov; 49(3):378-84. PubMed ID: 12360527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies.
    Buehler MJ
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):59-67. PubMed ID: 19627772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of saline and pH on collagen type I fibrillogenesis in vitro: fibril polymorphism and colloidal gold labelling.
    Harris JR; Reiber A
    Micron; 2007; 38(5):513-21. PubMed ID: 17045806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanogen bromide peptides of the fibrillar collagens I, III, and V and their mass spectrometric characterization: detection of linear peptides, peptide glycosylation, and cross-linking peptides involved in formation of homo- and heterotypic fibrils.
    Henkel W; Dreisewerd K
    J Proteome Res; 2007 Nov; 6(11):4269-89. PubMed ID: 17939700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen fibril formation in a wound healing model.
    White JF; Werkmeister JA; Darby IA; Bisucci T; Birk DE; Ramshaw JA
    J Struct Biol; 2002; 137(1-2):23-30. PubMed ID: 12064930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second harmonic generation microscopy to investigate collagen configuration: a pericarditis case study.
    Bélisle J; Zigras T; Costantino S; Cartier R; Butany J; Wiseman PW; Leask RL
    Cardiovasc Pathol; 2010; 19(4):e125-8. PubMed ID: 19632137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen-silica hybrid materials: sodium silicate and sodium chloride effects on type I collagen fibrillogenesis.
    Eglin D; Coradin T; Giraud Guille MM; Helary C; Livage J
    Biomed Mater Eng; 2005; 15(1-2):43-50. PubMed ID: 15623929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress related collagen ultrastructure in human aortic valves--implications for tissue engineering.
    Balguid A; Driessen NJ; Mol A; Schmitz JP; Verheyen F; Bouten CV; Baaijens FP
    J Biomech; 2008 Aug; 41(12):2612-7. PubMed ID: 18701107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of spontaneous collagen fibrillogenesis in a cell-free and tension-free environment.
    Piérard GE; Hermanns-Lê T; Delvenne P; Piérard-Franchimont C
    Clin Exp Dermatol; 2013 Jun; 38(4):417-20. PubMed ID: 23531189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen fibrils of an invertebrate (Sepia officinalis) are heterotypic: immunocytochemical demonstration.
    Bairati A; Gioria M
    J Struct Biol; 2004 Aug; 147(2):159-65. PubMed ID: 15193644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.