These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16042263)

  • 1. In-situ monitoring of microbial biomass in wetland mesocosms.
    McHenry J; Werker A
    Water Sci Technol; 2005; 51(9):233-41. PubMed ID: 16042263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracers for investigating pathogen fate and removal mechanisms in mesocosms.
    Werker AG; Van Loon W; Legge RL
    Sci Total Environ; 2007 Jul; 380(1-3):188-95. PubMed ID: 17258793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatments of oil-refinery and steel-mill wastewaters by mesocosm constructed wetland systems.
    Yang L; Hu CC
    Water Sci Technol; 2005; 51(9):157-64. PubMed ID: 16042254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of organic matter fractions in a gravel-bed constructed wetland.
    Nguyen L
    Water Sci Technol; 2001; 44(11-12):281-7. PubMed ID: 11804108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of wastewater discharge on biomass production and nutrient content of Cyperus papyrus and Miscanthidium violaceum in the Nakivubo wetland, Kampala, Uganda.
    Kansiime F; Nalubega M; van Bruggen JJ; Denny P
    Water Sci Technol; 2003; 48(5):233-40. PubMed ID: 14621169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia.
    Greenway M; Woolley A
    Water Sci Technol; 2001; 44(11-12):303-10. PubMed ID: 11804111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium.
    Lesage E; Rousseau DP; Meers E; Tack FM; De Pauw N
    Sci Total Environ; 2007 Jul; 380(1-3):102-15. PubMed ID: 17240426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrata effects on bacterial biofilm development in a subsurface flow dairy waste treatment wetland.
    Silyn-Roberts G; Lewis G
    Water Sci Technol; 2003; 48(8):261-9. PubMed ID: 14682595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient removal and plant biomass in a subsurface flow constructed wetland in Brisbane, Australia.
    Browning K; Greenway M
    Water Sci Technol; 2003; 48(5):183-9. PubMed ID: 14621163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations.
    Wang R; Baldy V; Périssol C; Korboulewsky N
    J Environ Manage; 2012 Mar; 95 Suppl():S158-64. PubMed ID: 21514037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible use of constructed wetland to remove selenocyanate, arsenic, and boron from electric utility wastewater.
    Ye ZH; Lin ZQ; Whiting SN; de Souza MP; Terry N
    Chemosphere; 2003 Sep; 52(9):1571-9. PubMed ID: 12867190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms.
    Zhang Z; Rengel Z; Meney K
    Chemosphere; 2008 Aug; 72(11):1823-8. PubMed ID: 18561977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of a subsurface vertical flow constructed wetland for CSO treatment.
    Dittmer U; Meyer D; Langergraber G
    Water Sci Technol; 2005; 51(9):225-32. PubMed ID: 16042262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ciprofloxacin on microbiological development in wetland mesocosms.
    Weber KP; Mitzel MR; Slawson RM; Legge RL
    Water Res; 2011 May; 45(10):3185-96. PubMed ID: 21492897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Salmonella and microbial indicators in constructed wetlands treating swine wastewater.
    Hill VR; Sobsey MD
    Water Sci Technol; 2001; 44(11-12):215-22. PubMed ID: 11804098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial mechanisms of carbon removal in subsurface flow wetlands.
    Baptista JD; Donnelly T; Rayne D; Davenport RJ
    Water Sci Technol; 2003; 48(5):127-34. PubMed ID: 14621156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A constructed surface flow wetland for treating agricultural waste waters.
    Borin M; Bonaiti G; Santamaria G; Giardini L
    Water Sci Technol; 2001; 44(11-12):523-30. PubMed ID: 11804144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic matter distribution of the root zone in a constructed subsurface flow wetland.
    Tuan LA; Wyseure G
    Commun Agric Appl Biol Sci; 2007; 72(1):297-300. PubMed ID: 18018906
    [No Abstract]   [Full Text] [Related]  

  • 19. Microbial community structure stability, a key parameter in monitoring the development of constructed wetland mesocosms during start-up.
    Ramond JB; Welz PJ; Cowan DA; Burton SG
    Res Microbiol; 2012 Jan; 163(1):28-35. PubMed ID: 22027103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of microfauna communities in full scale subsurface flow constructed wetlands used as secondary and tertiary treatment.
    Puigagut J; Salvadó H; García D; Granes F; García J
    Water Res; 2007 Apr; 41(8):1645-52. PubMed ID: 17360022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.