These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16042263)

  • 21. Influence of plant tillering and root volume on flow pattern and water purification of vertical down flow wetlands for domestic wastewater treatment.
    Wang S; Xu Z; Li H
    Water Sci Technol; 2009; 59(1):81-7. PubMed ID: 19151489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of the controlled emptying of in-sewer storage on wastewater treatment plant performance.
    Jack AG; Ashley RM
    Water Sci Technol; 2002; 45(3):247-53. PubMed ID: 11902476
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecological characteristics of a natural wetland receiving secondary effluent.
    Martin JR; Clarke RA; Knight RL
    Water Sci Technol; 2001; 44(11-12):317-24. PubMed ID: 11804113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of pH on plant litter decomposition and metal cycling in wetland mesocosms supplied with mine drainage.
    Batty LC; Younger PL
    Chemosphere; 2007 Jan; 66(1):158-64. PubMed ID: 16820189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland.
    Wiessner A; Kappelmeyer U; Kuschk P; Kästner M
    Water Res; 2005 Nov; 39(19):4643-50. PubMed ID: 16246395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biota participating in wastewater treatment in a horizontal flow constructed wetland.
    Vymazal J; Sládedek V; Stach J
    Water Sci Technol; 2001; 44(11-12):211-4. PubMed ID: 11804097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tolerance towards explosives, and explosives removal from groundwater in treatment wetland mesocosms.
    Best EP; Miller JL; Larson SL
    Water Sci Technol; 2001; 44(11-12):515-21. PubMed ID: 11804143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Process efficiency and microbial monitoring in MBR (membrane bioreactor) and CASP (conventional activated sludge process) treatment of tannery wastewater.
    Munz G; Gualtiero M; Salvadori L; Claudia B; Claudio L
    Bioresour Technol; 2008 Dec; 99(18):8559-64. PubMed ID: 18499451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of the scale of horizontal subsurface flow constructed wetlands on flow and transport parameters.
    Suliman F; French H; Haugen LE; Kløve B; Jenssen P
    Water Sci Technol; 2005; 51(9):259-66. PubMed ID: 16042266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a conceptual model for vertical flow wetland metabolism.
    Giraldo E; Zárate E
    Water Sci Technol; 2001; 44(11-12):273-80. PubMed ID: 11804107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suitability of two types of organic wastes for the growth of sclerophyllous shrubs on limestone debris: a mesocosm trial.
    Maisto G; De Marco A; De Nicola F; Arena C; Vitale L; Virzo De Santo A
    Sci Total Environ; 2010 Mar; 408(7):1508-14. PubMed ID: 20092872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linking pond and wetland treatment: performance of domestic and farm systems in New Zealand.
    Tanner CC; Sukias JP
    Water Sci Technol; 2003; 48(2):331-9. PubMed ID: 14510228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of low-cost phosphorus removal from wastewater using co-treatments with constructed wetlands.
    Leader JW; Reddy KR; Wilkie AC
    Water Sci Technol; 2005; 51(9):283-90. PubMed ID: 16042269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing biological and chemical signatures related to nutrient removal by floating islands in stormwater mesocosms.
    Chang NB; Islam K; Marimon Z; Wanielista MP
    Chemosphere; 2012 Jul; 88(6):736-43. PubMed ID: 22587952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands.
    Tietz A; Kirschner A; Langergraber G; Sleytr K; Haberl R
    Sci Total Environ; 2007 Jul; 380(1-3):163-72. PubMed ID: 17223185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment.
    Hadad HR; Maine MA; Bonetto CA
    Chemosphere; 2006 Jun; 63(10):1744-53. PubMed ID: 16289223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformation of effluent organic matter during subsurface wetland treatment in the Sonoran Desert.
    Quanrud DM; Karpiscak MM; Lansey KE; Arnold RG
    Chemosphere; 2004 Feb; 54(6):777-88. PubMed ID: 14602111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial biomass, activity and community composition in constructed wetlands.
    Truu M; Juhanson J; Truu J
    Sci Total Environ; 2009 Jun; 407(13):3958-71. PubMed ID: 19157517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomass production of papyrus (Cyperus papyrus) in constructed wetland treating low-strength domestic wastewater.
    Perbangkhem T; Polprasert C
    Bioresour Technol; 2010 Jan; 101(2):833-5. PubMed ID: 19758797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen mass balance and microbial analysis of constructed wetlands treating municipal landfill leachate.
    Sawaittayothin V; Polprasert C
    Bioresour Technol; 2007 Feb; 98(3):565-70. PubMed ID: 16546377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.