These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16042380)

  • 1. New class of bacterial membrane oxidoreductases.
    Yanyushin MF; del Rosario MC; Brune DC; Blankenship RE
    Biochemistry; 2005 Aug; 44(30):10037-45. PubMed ID: 16042380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis and expression of the mono-heme containing cytochrome c subunit of Alternative Complex III in Chloroflexus aurantiacus.
    Gao X; Majumder EW; Kang Y; Yue H; Blankenship RE
    Arch Biochem Biophys; 2013 Jul; 535(2):197-204. PubMed ID: 23587789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cbb3 oxidases are an ancient innovation of the domain bacteria.
    Ducluzeau AL; Ouchane S; Nitschke W
    Mol Biol Evol; 2008 Jun; 25(6):1158-66. PubMed ID: 18353797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane-bound Bacillus cytochromes c and their phylogenetic position among bacterial class I cytochromes c.
    Sone N; Toh H
    FEMS Microbiol Lett; 1994 Oct; 122(3):203-10. PubMed ID: 7988862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alternative complex III from Rhodothermus marinus - a prototype of a new family of quinol:electron acceptor oxidoreductases.
    Pereira MM; Refojo PN; Hreggvidsson GO; Hjorleifsdottir S; Teixeira M
    FEBS Lett; 2007 Oct; 581(25):4831-5. PubMed ID: 17888426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic activity of the alternative complex III as a menaquinol:auracyanin oxidoreductase in the electron transfer chain of Chloroflexus aurantiacus.
    Gao X; Xin Y; Blankenship RE
    FEBS Lett; 2009 Oct; 583(19):3275-9. PubMed ID: 19755122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a blue-copper protein, auracyanin, of the filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii.
    Tsukatani Y; Nakayama N; Shimada K; Mino H; Itoh S; Matsuura K; Hanada S; Nagashima KV
    Arch Biochem Biophys; 2009 Oct; 490(1):57-62. PubMed ID: 19683508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auracyanin A from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus represents an unusual class of small blue copper proteins.
    Van Driessche G; Hu W; Van de Werken G; Selvaraj F; McManus JD; Blankenship RE; Van Beeumen JJ
    Protein Sci; 1999 May; 8(5):947-57. PubMed ID: 10338005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism.
    Castresana J; Lübben M; Saraste M
    J Mol Biol; 1995 Jul; 250(2):202-10. PubMed ID: 7608970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variants of the tetrahaem cytochrome c quinol dehydrogenase NrfH characterize the menaquinol-binding site, the haem c-binding motifs and the transmembrane segment.
    Kern M; Einsle O; Simon J
    Biochem J; 2008 Aug; 414(1):73-9. PubMed ID: 18439144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Rieske genes in prokaryotes: exchangeable Rieske subunits in the cytochrome bc-complex of Rubrivivax gelatinosus.
    Ouchane S; Nitschke W; Bianco P; Vermeglio A; Astier C
    Mol Microbiol; 2005 Jul; 57(1):261-75. PubMed ID: 15948965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenite oxidase, an ancient bioenergetic enzyme.
    Lebrun E; Brugna M; Baymann F; Muller D; Lièvremont D; Lett MC; Nitschke W
    Mol Biol Evol; 2003 May; 20(5):686-93. PubMed ID: 12679550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatic analysis of the TonB protein family.
    Chu BC; Peacock RS; Vogel HJ
    Biometals; 2007 Jun; 20(3-4):467-83. PubMed ID: 17225063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria.
    Frigaard NU; Bryant DA
    Arch Microbiol; 2004 Oct; 182(4):265-76. PubMed ID: 15340781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS.
    Palágyi-Mészáros LS; Maróti J; Latinovics D; Balogh T; Klement E; Medzihradszky KF; Rákhely G; Kovács KL
    FEBS J; 2009 Jan; 276(1):164-74. PubMed ID: 19019079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochromes P460 and c'-beta; a new family of high-spin cytochromes c.
    Elmore BO; Bergmann DJ; Klotz MG; Hooper AB
    FEBS Lett; 2007 Mar; 581(5):911-6. PubMed ID: 17292891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Tmc complex from Desulfovibrio vulgaris hildenborough is involved in transmembrane electron transfer from periplasmic hydrogen oxidation.
    Pereira PM; Teixeira M; Xavier AV; Louro RO; Pereira IA
    Biochemistry; 2006 Aug; 45(34):10359-67. PubMed ID: 16922512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of R-citramalyl-coenzyme A lyase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus.
    Friedmann S; Alber BE; Fuchs G
    J Bacteriol; 2007 Apr; 189(7):2906-14. PubMed ID: 17259315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative Complex III from phototrophic bacteria and its electron acceptor auracyanin.
    Majumder EL; King JD; Blankenship RE
    Biochim Biophys Acta; 2013; 1827(11-12):1383-91. PubMed ID: 23357331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.