BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16042421)

  • 1. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    Biochemistry; 2005 Aug; 44(30):10434-42. PubMed ID: 16042421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
    Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP
    Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    J Biol Chem; 2006 Jun; 281(25):17044-17053. PubMed ID: 16627482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the flavin reductase of Acinetobacter baumannii p-hydroxyphenylacetate 3-hydroxylase (HPAH) and identification of amino acid residues underlying its regulation by aromatic ligands.
    Yuenyao A; Petchyam N; Kamonsutthipaijit N; Chaiyen P; Pakotiprapha D
    Arch Biochem Biophys; 2018 Sep; 653():24-38. PubMed ID: 29940152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-terminal domain of 4-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii is an autoinhibitory domain.
    Phongsak T; Sucharitakul J; Thotsaporn K; Oonanant W; Yuvaniyama J; Svasti J; Ballou DP; Chaiyen P
    J Biol Chem; 2012 Jul; 287(31):26213-22. PubMed ID: 22661720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the mechanism of p-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa: a system composed of a small flavin reductase and a large flavin-dependent oxygenase.
    Chakraborty S; Ortiz-Maldonado M; Entsch B; Ballou DP
    Biochemistry; 2010 Jan; 49(2):372-85. PubMed ID: 20000468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast solvation dynamics of flavin mononucleotide in the reductase component of p-hydroxyphenylacetate hydroxylase.
    Chosrowjan H; Taniguchi S; Mataga N; Phongsak T; Sucharitakul J; Chaiyen P; Tanaka F
    J Phys Chem B; 2009 Jun; 113(25):8439-42. PubMed ID: 19485384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and preliminary X-ray analysis of the reductase component of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii.
    Oonanant W; Sucharitakul J; Chaiyen P; Yuvaniyama J
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jun; 68(Pt 6):720-3. PubMed ID: 22684080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel two-protein component flavoprotein hydroxylase.
    Chaiyen P; Suadee C; Wilairat P
    Eur J Biochem; 2001 Nov; 268(21):5550-61. PubMed ID: 11683878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I.
    Tang CK; Jeffers CE; Nichols JC; Tu SC
    Arch Biochem Biophys; 2001 Aug; 392(1):110-6. PubMed ID: 11469801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions with the substrate phenolic group are essential for hydroxylation by the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Tongsook C; Sucharitakul J; Thotsaporn K; Chaiyen P
    J Biol Chem; 2011 Dec; 286(52):44491-502. PubMed ID: 22052902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical method for detecting the biomarker 4-HPA by allosteric activation of Acinetobacterbaumannii reductase C1 subunit.
    Teanphonkrang S; Suginta W; Sucharitakul J; Fukamizo T; Chaiyen P; Schulte A
    J Biol Chem; 2021; 296():100467. PubMed ID: 33639166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B).
    Cunningham O; Gore MG; Mantle TJ
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):393-9. PubMed ID: 10620517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxylation of 4-hydroxyphenylethylamine derivatives by R263 variants of the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase.
    Chenprakhon P; Dhammaraj T; Chantiwas R; Chaiyen P
    Arch Biochem Biophys; 2017 Apr; 620():1-11. PubMed ID: 28300536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rates of the phthalate dioxygenase reaction with oxygen are dramatically increased by interactions with phthalate and phthalate oxygenase reductase.
    Tarasev M; Rhames F; Ballou DP
    Biochemistry; 2004 Oct; 43(40):12799-808. PubMed ID: 15461452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms.
    Thotsaporn K; Chenprakhon P; Sucharitakul J; Mattevi A; Chaiyen P
    J Biol Chem; 2011 Aug; 286(32):28170-80. PubMed ID: 21680741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.