BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 16042490)

  • 1. Inside-out disruption of silica/gold core-shell nanoparticles by pulsed laser irradiation.
    Prasad V; Mikhailovsky A; Zasadzinski JA
    Langmuir; 2005 Aug; 21(16):7528-32. PubMed ID: 16042490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray absorption of gold nanoparticles with thin silica shell.
    Park YS; Liz-Marzán LM; Kasuya A; Kobayashi Y; Nagao D; Konno M; Mamykin S; Dmytruk A; Takeda M; Ohuchi N
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3503-6. PubMed ID: 17252799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS.
    Tunc I; Demirok UK; Suzer S; Correa-Duatre MA; Liz-Marzan LM
    J Phys Chem B; 2005 Dec; 109(50):24182-4. PubMed ID: 16375410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A selective chemical sensor based on the plasmonic response of phosphinine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers.
    Goettmann F; Moores A; Boissière C; Le Floch P; Sanchez C
    Small; 2005 Jun; 1(6):636-9. PubMed ID: 17193499
    [No Abstract]   [Full Text] [Related]  

  • 6. Gold and silica-coated gold nanoparticles as thermographic labels for DNA detection.
    Cerruti MG; Sauthier M; Leonard D; Liu D; Duscher G; Feldheim DL; Franzen S
    Anal Chem; 2006 May; 78(10):3282-8. PubMed ID: 16689528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes.
    Phonthammachai N; Kah JC; Jun G; Sheppard CJ; Olivo MC; Mhaisalkar SG; White TJ
    Langmuir; 2008 May; 24(9):5109-12. PubMed ID: 18370434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles.
    Ju S; Nguyen VL; Watekar PR; Kim BH; Jeong C; Boo S; Kim CJ; Han WT
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3555-8. PubMed ID: 17252810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V; Astafyeva L; Jean B
    Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallodielectric hollow shells: optical and catalytic properties.
    Pastoriza-Santos I; Pérez-Juste J; Carregal-Romero S; Hervés P; Liz-Marzán LM
    Chem Asian J; 2006 Nov; 1(5):730-6. PubMed ID: 17441116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures.
    Hu KW; Liu TM; Chung KY; Huang KS; Hsieh CT; Sun CK; Yeh CS
    J Am Chem Soc; 2009 Oct; 131(40):14186-7. PubMed ID: 19772320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation.
    Gorin DA; Portnov SA; Inozemtseva OA; Luklinska Z; Yashchenok AM; Pavlov AM; Skirtach AG; Möhwald H; Sukhorukov GB
    Phys Chem Chem Phys; 2008 Dec; 10(45):6899-905. PubMed ID: 19015796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of iron and gold silicide nanodomains on silicon (111) by the reaction of gold, iron-gold core-shell, and alloy nanoparticles with triethylsilane.
    Dahal N; Wright JT; Willey TM; Meulenberg RW; Chikan V
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2238-47. PubMed ID: 20735094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.
    Harrison RK; Ben-Yakar A
    Opt Express; 2010 Oct; 18(21):22556-71. PubMed ID: 20941153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biphasic synthesis of Au@SiO2 core-shell particles with stepwise ligand exchange.
    Schulzendorf M; Cavelius C; Born P; Murray E; Kraus T
    Langmuir; 2011 Jan; 27(2):727-32. PubMed ID: 21142211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New preparation method of gold nanoparticles on SiO2.
    Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM
    J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NIR-enhanced drug release from porous Au/SiO2 nanoparticles.
    Yagüe C; Arruebo M; Santamaria J
    Chem Commun (Camb); 2010 Oct; 46(40):7513-5. PubMed ID: 20830418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment.
    Li D; He Q; Cui Y; Wang K; Zhang X; Li J
    Chemistry; 2007; 13(8):2224-9. PubMed ID: 17154319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyvinylpyrrolidone molecular weight controls silica shell thickness on Au nanoparticles with diglycerylsilane as precursor.
    Vanderkooy A; Brook MA
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3980-6. PubMed ID: 22767525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.