These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 1604258)

  • 1. A computerized wheelchair ergometer. Results of a comparison study.
    Veeger HE; van der Woude LH; Rozendal RH
    Scand J Rehabil Med; 1992; 24(1):17-23. PubMed ID: 1604258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new procedure to determine external power output during handrim wheelchair propulsion on a roller ergometer: a reliability study.
    Theisen D; Francaux M; Fayt A; Sturbois X
    Int J Sports Med; 1996 Nov; 17(8):564-71. PubMed ID: 8973976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of biomechanical variables during wheelchair ergometry testing.
    Finley MA; Rodgers MM; Rasch EK; McQuade KJ; Keyser RE
    J Rehabil Res Dev; 2002; 39(1):73-81. PubMed ID: 11926329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Within-cycle characteristics of the wheelchair push in sprinting on a wheelchair ergometer.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1991 Feb; 23(2):264-71. PubMed ID: 2017025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Scand J Rehabil Med; 1994 Mar; 26(1):37-48. PubMed ID: 8023084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standardization of measuring power output during wheelchair propulsion on a treadmill Pitfalls in a multi-center study.
    de Groot S; Zuidgeest M; van der Woude LH
    Med Eng Phys; 2006 Jul; 28(6):604-12. PubMed ID: 16300988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic power output and propulsion technique in spinal cord injured subjects during wheelchair ergometry.
    Dallmeijer AJ; Kappe YJ; Veeger DH; Janssen TW; van der Woude LH
    J Rehabil Res Dev; 1994; 31(2):120-8. PubMed ID: 7965868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of cardiorespiratory measurements during wheelchair ergometry.
    Keyser RE; Rodgers MM; Rasch ER
    J Rehabil Res Dev; 2001; 38(4):423-30. PubMed ID: 11563495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F; Tordi N
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):343-9. PubMed ID: 15109753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is effective force application in handrim wheelchair propulsion also efficient?
    Bregman DJ; van Drongelen S; Veeger HE
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):13-9. PubMed ID: 18990473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of training on biomechanics of wheelchair propulsion.
    Rodgers MM; Keyser RE; Rasch EK; Gorman PH; Russell PJ
    J Rehabil Res Dev; 2001; 38(5):505-11. PubMed ID: 11732828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-velocity characteristics of upper limb extension during maximal wheelchair sprinting performed by healthy able-bodied females.
    Hintzy F; Tordi N; Predine E; Rouillon JD; Belli A
    J Sports Sci; 2003 Nov; 21(11):921-6. PubMed ID: 14626371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in bimanual wheelchair propulsion: consistency of two instrumented wheels during handrim wheelchair propulsion on a motor driven treadmill.
    Vegter RJ; Lamoth CJ; de Groot S; Veeger DH; van der Woude LH
    J Neuroeng Rehabil; 2013 Jan; 10():9. PubMed ID: 23360756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physiological and biomechanical comparison of over-ground, treadmill and ergometer wheelchair propulsion.
    Mason B; Lenton J; Leicht C; Goosey-Tolfrey V
    J Sports Sci; 2014; 32(1):78-91. PubMed ID: 23879733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses.
    Smith PA; Glaser RM; Petrofsky JS; Underwood PD; Smith GB; Richard JJ
    Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.