BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 16042614)

  • 1. Role of electron-transfer quenching of chlorophyll fluorescence by carotenoids in non-photochemical quenching of green plants.
    Dreuw A; Fleming GR; Head-Gordon M
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):858-62. PubMed ID: 16042614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.
    Young AJ; Frank HA
    J Photochem Photobiol B; 1996 Oct; 36(1):3-15. PubMed ID: 8988608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants.
    Ruban AV; Young AJ; Horton P
    Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.
    Dreuw A; Wormit M
    J Inorg Biochem; 2008 Mar; 102(3):458-65. PubMed ID: 18177943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.
    Wormit M; Dreuw A
    Phys Chem Chem Phys; 2007 Jun; 9(23):2917-31. PubMed ID: 17551615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of grana stacking for xanthophyll cycle-dependent NPQ in the thylakoid membranes of higher plants.
    Goss R; Oroszi S; Wilhelm C
    Physiol Plant; 2007 Nov; 131(3):496-507. PubMed ID: 18251887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoid cation formation and the regulation of photosynthetic light harvesting.
    Holt NE; Zigmantas D; Valkunas L; Li XP; Niyogi KK; Fleming GR
    Science; 2005 Jan; 307(5708):433-6. PubMed ID: 15662017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On photoprotective mechanisms of carotenoids in light harvesting complex.
    Xiao FG; Shen L; Ji HF
    Biochem Biophys Res Commun; 2011 Oct; 414(1):1-4. PubMed ID: 21945931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana.
    Grouneva I; Jakob T; Wilhelm C; Goss R
    Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione.
    Barták M; Hájek J; Vráblíková H; Dubová J
    Plant Biol (Stuttg); 2004 May; 6(3):333-41. PubMed ID: 15143442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The xanthophyll cycle in green algae (chlorophyta): its role in the photosynthetic apparatus.
    Masojídek J; Kopecký J; Koblízek M; Torzillo G
    Plant Biol (Stuttg); 2004 May; 6(3):342-9. PubMed ID: 15143443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient.
    Holub O; Seufferheld MJ; Gohlke C; Govindjee ; Heiss GJ; Clegg RM
    J Microsc; 2007 May; 226(Pt 2):90-120. PubMed ID: 17444940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Quenching of chlorophyll and pheophytin fluorescence with fucoxanthin].
    Paramonova LI; Naush Ia; Kreslavskiĭ VD; Stolovitskiĭ IuM
    Biofizika; 1982; 27(2):197-201. PubMed ID: 7074143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light emission originating from photosystem II radical pair recombination is sensitive to zeaxanthin related non-photochemical quenching (NPQ).
    Wagner H; Gilbert M; Goss R; Wilhelm C
    J Photochem Photobiol B; 2006 Jun; 83(3):172-9. PubMed ID: 16488152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A micellar model system for the role of zeaxanthin in the non-photochemical quenching process of photosynthesis--chlorophyll fluorescence quenching by the xanthophylls.
    Avital S; Brumfeld V; Malkin S
    Biochim Biophys Acta; 2006 Jul; 1757(7):798-810. PubMed ID: 16870132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of light intensity on cyclic electron flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves.
    Miyake C; Horiguchi S; Makino A; Shinzaki Y; Yamamoto H; Tomizawa K
    Plant Cell Physiol; 2005 Nov; 46(11):1819-30. PubMed ID: 16143595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes - a theoretical perspective.
    Wormit M; Harbach PH; Mewes JM; Amarie S; Wachtveitl J; Dreuw A
    Biochim Biophys Acta; 2009 Jun; 1787(6):738-46. PubMed ID: 19366605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants.
    Cupellini L; Calvani D; Jacquemin D; Mennucci B
    Nat Commun; 2020 Jan; 11(1):662. PubMed ID: 32005811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an additional low-lying excited state of carotenoid radical cations.
    Amarie S; Arefe K; Starcke JH; Dreuw A; Wachtveitl J
    J Phys Chem B; 2008 Nov; 112(44):14011-7. PubMed ID: 18842013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond time-resolved transient absorption spectroscopy of xanthophylls.
    Niedzwiedzki DM; Sullivan JO; Polívka T; Birge RR; Frank HA
    J Phys Chem B; 2006 Nov; 110(45):22872-85. PubMed ID: 17092039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.