These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16043113)

  • 1. Detecting proton flux across chromatophores driven by F0F1-ATPase using N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt.
    Yuanbo C; Fan Z; Jiachang Y
    Anal Biochem; 2005 Sep; 344(1):102-7. PubMed ID: 16043113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanically driven proton conduction in single delta-free F0F1-ATPase.
    Xiaolong L; Xiaoai Z; Yuanbo C; Jiachang Y; Zhiyong L; Peidong J
    Biochem Biophys Res Commun; 2006 Sep; 347(3):752-7. PubMed ID: 16844089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amount and turnover rate of the F0F1-ATPase and the stoichiometry of its inhibition by oligomycin in Rhodospirillum rubrum chromatophores.
    Norling B; Strid A; Tourikas C; Nyrén P
    Eur J Biochem; 1989 Dec; 186(1-2):333-7. PubMed ID: 2532130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the hydrolysis activity of F0F1-ATPases using 60 Hz magnetic fields.
    Chen C; Cui Y; Yue J; Huo X; Song T
    Bioelectromagnetics; 2009 Dec; 30(8):663-8. PubMed ID: 19496105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid detection of several foodborne pathogens by F0F1-ATPase molecular motor biosensor.
    Zhang J; Li Z; Zhang H; Wang J; Liu Y; Chen G
    J Microbiol Methods; 2013 Apr; 93(1):37-41. PubMed ID: 23361046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diethylstilbestrol. Interactions with membranes and proteins and the different effects upon Ca2+- and Mg2+-dependent activities of the F1-ATPase from Rhodospirillum rubrum.
    Strid A; Nyrén P; Baltscheffsky M
    Eur J Biochem; 1988 Sep; 176(2):281-5. PubMed ID: 2901353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of extremely low frequency magnetic fields on hydrolysis of F0F1-ATPases and their relationship with turnover rates of F1].
    Chen CF; Cui YB; Yue JC
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2008 Jun; 26(6):327-31. PubMed ID: 18771613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP synthesis and hydrolysis by a hybrid system reconstituted from the beta-subunit of Escherichia coli F1-ATPase and beta-less chromatophores of Rhodospirillum rubrum.
    Gromet-Elhanan Z; Khananshvili D; Weiss S; Kanazawa H; Futai M
    J Biol Chem; 1985 Oct; 260(23):12635-40. PubMed ID: 2864345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorometric determination of Vibrio parahaemolyticus using an F
    Duan N; Wu S; Zhang H; Zou Y; Wang Z
    Mikrochim Acta; 2018 May; 185(6):304. PubMed ID: 29777309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using cadmium telluride quantum dots as a proton flux sensor and applying to detect H9 avian influenza virus.
    Yun Z; Zhengtao D; Jiachang Y; Fangqiong T; Qun W
    Anal Biochem; 2007 May; 364(2):122-7. PubMed ID: 17400169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DCCD-sensitive proton permeability of bacterial photosynthetic membranes. Cross-reconstitution studies with purified bovine heart Fo subunits.
    Zanotti F; Casadio R; Perrucci C; Guerrieri F
    Biochim Biophys Acta; 1996 Aug; 1276(1):80-6. PubMed ID: 8764893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. F0F1-ATPase as biosensor to detect single virus.
    Liu X; Zhang Y; Yue J; Jiang P; Zhang Z
    Biochem Biophys Res Commun; 2006 Apr; 342(4):1319-22. PubMed ID: 16516850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relevance of divalent cations to ATP-driven proton pumping in beef heart mitochondrial F0F1-ATPase.
    Papageorgiou S; Melandri AB; Solaini G
    J Bioenerg Biomembr; 1998 Dec; 30(6):533-41. PubMed ID: 10206473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-linked reactions catalyzed by the purified ATPase complex (F0F1) from Rhodospirillum rubrum chromatophores.
    Schneider E; Friedl P; Schwuléra U; Dose K
    Eur J Biochem; 1980; 108(1):331-6. PubMed ID: 6447594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Division of divalent cations into two groups in relation to their effect on the coupling of the F0F1-ATPase of Rhodospirillum rubrum to the protonmotive force.
    Strid A; Nyrén P
    Biochemistry; 1989 Dec; 28(25):9718-24. PubMed ID: 2482079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of equisetin on energy-linked reactions in Rhodospirillum rubrum chromatophores.
    Nyrén P; Strid A
    Arch Biochem Biophys; 1989 Feb; 268(2):659-66. PubMed ID: 2536535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of 4-chloro-7-nitrobenzofurazan with Rhodospirillum rubrum chromatophores, their soluble F1-ATPase, and the isolated purified beta-subunit.
    Khananshvili D; Gromet-Elhanan Z
    J Biol Chem; 1983 Mar; 258(6):3714-9. PubMed ID: 6219996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Dicyclohexylcarbodiimide as an inhibitor of light- and pyrophosphate-induced formation of membrane potential in chromatophores of purple bacteria].
    Pototskiĭ NIa; Samuilov VD
    Biokhimiia; 1983 Aug; 48(8):1235-40. PubMed ID: 6414533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using giant unilamellar lipid vesicle micro-patterns as ultrasmall reaction containers to observe reversible ATP synthesis/hydrolysis of F0F1-ATPase directly.
    Liu X; Zhao R; Zhang Y; Jiang X; Yue J; Jiang P; Zhang Z
    Biochim Biophys Acta; 2007 Dec; 1770(12):1620-6. PubMed ID: 17913367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Reconstruction of highly purified proton-translocating pyrophosphatase from Rhodospirillum rubrum].
    Shakhov IuA; Niren P; Baltchevski M
    Biokhimiia; 1983 Aug; 48(8):1347-51. PubMed ID: 6226320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.