BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16043120)

  • 1. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage.
    Mani M; Smith J; Kandavelou K; Berg JM; Chandrasegaran S
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1191-1197. PubMed ID: 16043120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A detailed study of the substrate specificity of a chimeric restriction enzyme.
    Smith J; Berg JM; Chandrasegaran S
    Nucleic Acids Res; 1999 Jan; 27(2):674-81. PubMed ID: 9862996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating designed zinc-finger nucleases with minimal cytotoxicity.
    Ramalingam S; Kandavelou K; Rajenderan R; Chandrasegaran S
    J Mol Biol; 2011 Jan; 405(3):630-41. PubMed ID: 21094162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced cleavage of double-stranded DNA by artificial zinc-finger nuclease sandwiched between two zinc-finger proteins.
    Mineta Y; Okamoto T; Takenaka K; Doi N; Aoyama Y; Sera T
    Biochemistry; 2008 Nov; 47(47):12257-9. PubMed ID: 18980382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells.
    Durai S; Mani M; Kandavelou K; Wu J; Porteus MH; Chandrasegaran S
    Nucleic Acids Res; 2005; 33(18):5978-90. PubMed ID: 16251401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient double-stranded DNA cleavage by artificial zinc-finger nucleases composed of one zinc-finger protein and a single-chain FokI dimer.
    Mino T; Aoyama Y; Sera T
    J Biotechnol; 2009 Mar; 140(3-4):156-61. PubMed ID: 19428709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains.
    Smith J; Bibikova M; Whitby FG; Reddy AR; Chandrasegaran S; Carroll D
    Nucleic Acids Res; 2000 Sep; 28(17):3361-9. PubMed ID: 10954606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments and clinical studies utilizing engineered zinc finger nuclease technology.
    Jo YI; Kim H; Ramakrishna S
    Cell Mol Life Sci; 2015 Oct; 72(20):3819-30. PubMed ID: 26089249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sandwiched zinc-finger nucleases demonstrating higher homologous recombination rates than conventional zinc-finger nucleases in mammalian cells.
    Mori T; Mori K; Tobimatsu T; Sera T
    Bioorg Med Chem Lett; 2014 Feb; 24(3):813-6. PubMed ID: 24412074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved zinc-finger nuclease architecture for highly specific genome editing.
    Miller JC; Holmes MC; Wang J; Guschin DY; Lee YL; Rupniewski I; Beausejour CM; Waite AJ; Wang NS; Kim KA; Gregory PD; Pabo CO; Rebar EJ
    Nat Biotechnol; 2007 Jul; 25(7):778-85. PubMed ID: 17603475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases.
    Bibikova M; Carroll D; Segal DJ; Trautman JK; Smith J; Kim YG; Chandrasegaran S
    Mol Cell Biol; 2001 Jan; 21(1):289-97. PubMed ID: 11113203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Custom-designed molecular scissors for site-specific manipulation of the plant and mammalian genomes.
    Kandavelou K; Chandrasegaran S
    Methods Mol Biol; 2009; 544():617-36. PubMed ID: 19488728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel zinc-finger nuclease platform with a sequence-specific cleavage module.
    Schierling B; Dannemann N; Gabsalilow L; Wende W; Cathomen T; Pingoud A
    Nucleic Acids Res; 2012 Mar; 40(6):2623-38. PubMed ID: 22135304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion.
    Söllü C; Pars K; Cornu TI; Thibodeau-Beganny S; Maeder ML; Joung JK; Heilbronn R; Cathomen T
    Nucleic Acids Res; 2010 Dec; 38(22):8269-76. PubMed ID: 20716517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple-turnover cleavage of double-stranded DNA by sandwiched zinc-finger nuclease.
    Mineta Y; Okamoto T; Takenaka K; Doi N; Aoyama Y; Sera T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):279-80. PubMed ID: 19749369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of functional, noncovalently assembled zinc finger nucleases.
    Park SY; Zheng X; Kim YG
    Biochem Biophys Res Commun; 2014 Oct; 453(3):289-95. PubMed ID: 25304177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Custom-designed zinc finger nucleases: what is next?
    Wu J; Kandavelou K; Chandrasegaran S
    Cell Mol Life Sci; 2007 Nov; 64(22):2933-44. PubMed ID: 17763826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DNA binding domain of a papillomavirus E2 protein programs a chimeric nuclease to cleave integrated human papillomavirus DNA in HeLa cervical carcinoma cells.
    Horner SM; DiMaio D
    J Virol; 2007 Jun; 81(12):6254-64. PubMed ID: 17392356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unidirectional cloning by cleaving heterogeneous sites with a single sandwiched zinc finger nuclease.
    Shinomiya K; Mori T; Aoyama Y; Sera T
    Biochem Biophys Res Commun; 2011 Nov; 414(4):733-6. PubMed ID: 22001928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creating zinc finger nucleases to manipulate the genome in a site-specific manner using a modular-assembly approach.
    Porteus M
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top93. PubMed ID: 21123434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.