These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 16043190)
1. Determination of material models for arterial walls from uniaxial extension tests and histological structure. Holzapfel GA J Theor Biol; 2006 Jan; 238(2):290-302. PubMed ID: 16043190 [TBL] [Abstract][Full Text] [Related]
2. A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries. Karimi A; Navidbakhsh M; Shojaei A Tissue Cell; 2015 Apr; 47(2):152-8. PubMed ID: 25758947 [TBL] [Abstract][Full Text] [Related]
3. A description of arterial wall mechanics using limiting chain extensibility constitutive models. Horgan CO; Saccomandi G Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694 [TBL] [Abstract][Full Text] [Related]
4. Modelling the mechanical response of elastin for arterial tissue. Watton PN; Ventikos Y; Holzapfel GA J Biomech; 2009 Jun; 42(9):1320-5. PubMed ID: 19394942 [TBL] [Abstract][Full Text] [Related]
5. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. Weisbecker H; Pierce DM; Regitnig P; Holzapfel GA J Mech Behav Biomed Mater; 2012 Aug; 12():93-106. PubMed ID: 22659370 [TBL] [Abstract][Full Text] [Related]
6. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. Vande Geest JP; Sacks MS; Vorp DA J Biomech; 2006; 39(7):1324-34. PubMed ID: 15885699 [TBL] [Abstract][Full Text] [Related]
7. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries. Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399 [TBL] [Abstract][Full Text] [Related]
8. Microplane constitutive model and computational framework for blood vessel tissue. Caner FC; Carol I J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of biaxial tension tests of soft tissues. Bursa J; Zemanek M Stud Health Technol Inform; 2008; 133():45-55. PubMed ID: 18376012 [TBL] [Abstract][Full Text] [Related]
10. A strain energy function for arteries accounting for wall composition and structure. Zulliger MA; Fridez P; Hayashi K; Stergiopulos N J Biomech; 2004 Jul; 37(7):989-1000. PubMed ID: 15165869 [TBL] [Abstract][Full Text] [Related]
11. Introducing mesoscopic information into constitutive equations for arterial walls. Ogden RW; Saccomandi G Biomech Model Mechanobiol; 2007 Sep; 6(5):333-44. PubMed ID: 17124617 [TBL] [Abstract][Full Text] [Related]
12. 3D Mechanical properties of the layered esophagus: experiment and constitutive model. Yang W; Fung TC; Chian KS; Chong CK J Biomech Eng; 2006 Dec; 128(6):899-908. PubMed ID: 17154692 [TBL] [Abstract][Full Text] [Related]
13. Mechanical characterization of anisotropic planar biological soft tissues using large indentation: a computational feasibility study. Cox MA; Driessen NJ; Bouten CV; Baaijens FP J Biomech Eng; 2006 Jun; 128(3):428-36. PubMed ID: 16706592 [TBL] [Abstract][Full Text] [Related]
14. Fung's model of arterial wall enhanced with a failure description. Volokh KY Mol Cell Biomech; 2008 Sep; 5(3):207-16. PubMed ID: 18751529 [TBL] [Abstract][Full Text] [Related]
15. Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests. Gundiah N; B Ratcliffe M; A Pruitt L J Biomech; 2007; 40(3):586-94. PubMed ID: 16643925 [TBL] [Abstract][Full Text] [Related]
16. A new constitutive model for multi-layered collagenous tissues. Kroon M; Holzapfel GA J Biomech; 2008 Aug; 41(12):2766-71. PubMed ID: 18657813 [TBL] [Abstract][Full Text] [Related]
17. The fiber orientation in the coronary arterial wall at physiological loading evaluated with a two-fiber constitutive model. van der Horst A; van den Broek CN; van de Vosse FN; Rutten MC Biomech Model Mechanobiol; 2012 Mar; 11(3-4):533-42. PubMed ID: 21750906 [TBL] [Abstract][Full Text] [Related]
18. Three-part passive constitutive laws for the aorta in simple elongation. Sokolis DP J Med Eng Technol; 2007; 31(6):397-409. PubMed ID: 17852649 [TBL] [Abstract][Full Text] [Related]
19. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion. Van Epps JS; Vorp DA J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508 [TBL] [Abstract][Full Text] [Related]
20. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Sun W; Sacks MS Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]