BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16043190)

  • 1. Determination of material models for arterial walls from uniaxial extension tests and histological structure.
    Holzapfel GA
    J Theor Biol; 2006 Jan; 238(2):290-302. PubMed ID: 16043190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries.
    Karimi A; Navidbakhsh M; Shojaei A
    Tissue Cell; 2015 Apr; 47(2):152-8. PubMed ID: 25758947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A description of arterial wall mechanics using limiting chain extensibility constitutive models.
    Horgan CO; Saccomandi G
    Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the mechanical response of elastin for arterial tissue.
    Watton PN; Ventikos Y; Holzapfel GA
    J Biomech; 2009 Jun; 42(9):1320-5. PubMed ID: 19394942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening.
    Weisbecker H; Pierce DM; Regitnig P; Holzapfel GA
    J Mech Behav Biomed Mater; 2012 Aug; 12():93-106. PubMed ID: 22659370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta.
    Vande Geest JP; Sacks MS; Vorp DA
    J Biomech; 2006; 39(7):1324-34. PubMed ID: 15885699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of biaxial tension tests of soft tissues.
    Bursa J; Zemanek M
    Stud Health Technol Inform; 2008; 133():45-55. PubMed ID: 18376012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strain energy function for arteries accounting for wall composition and structure.
    Zulliger MA; Fridez P; Hayashi K; Stergiopulos N
    J Biomech; 2004 Jul; 37(7):989-1000. PubMed ID: 15165869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introducing mesoscopic information into constitutive equations for arterial walls.
    Ogden RW; Saccomandi G
    Biomech Model Mechanobiol; 2007 Sep; 6(5):333-44. PubMed ID: 17124617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Mechanical properties of the layered esophagus: experiment and constitutive model.
    Yang W; Fung TC; Chian KS; Chong CK
    J Biomech Eng; 2006 Dec; 128(6):899-908. PubMed ID: 17154692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization of anisotropic planar biological soft tissues using large indentation: a computational feasibility study.
    Cox MA; Driessen NJ; Bouten CV; Baaijens FP
    J Biomech Eng; 2006 Jun; 128(3):428-36. PubMed ID: 16706592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fung's model of arterial wall enhanced with a failure description.
    Volokh KY
    Mol Cell Biomech; 2008 Sep; 5(3):207-16. PubMed ID: 18751529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests.
    Gundiah N; B Ratcliffe M; A Pruitt L
    J Biomech; 2007; 40(3):586-94. PubMed ID: 16643925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new constitutive model for multi-layered collagenous tissues.
    Kroon M; Holzapfel GA
    J Biomech; 2008 Aug; 41(12):2766-71. PubMed ID: 18657813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fiber orientation in the coronary arterial wall at physiological loading evaluated with a two-fiber constitutive model.
    van der Horst A; van den Broek CN; van de Vosse FN; Rutten MC
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):533-42. PubMed ID: 21750906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-part passive constitutive laws for the aorta in simple elongation.
    Sokolis DP
    J Med Eng Technol; 2007; 31(6):397-409. PubMed ID: 17852649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.