BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 16043207)

  • 1. N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction.
    Ruggli N; Bird BH; Liu L; Bauhofer O; Tratschin JD; Hofmann MA
    Virology; 2005 Sep; 340(2):265-76. PubMed ID: 16043207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical swine fever virus Erns glycoprotein antagonizes induction of interferon-beta by double-stranded RNA.
    Luo X; Ling D; Li T; Wan C; Zhang C; Pan Z
    Can J Microbiol; 2009 Jun; 55(6):698-704. PubMed ID: 19767841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells.
    Bauhofer O; Summerfield A; McCullough KC; Ruggli N
    Virology; 2005 Dec; 343(1):93-105. PubMed ID: 16154171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylation of classical swine fever virus E(rns) is essential for binding double-stranded RNA and preventing interferon-beta induction.
    Luo X; Pan R; Wan C; Liu X; Wu J; Pan Z
    Virus Res; 2009 Dec; 146(1-2):135-9. PubMed ID: 19782108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro.
    Ruggli N; Summerfield A; Fiebach AR; Guzylack-Piriou L; Bauhofer O; Lamm CG; Waltersperger S; Matsuno K; Liu L; Gerber M; Choi KH; Hofmann MA; Sakoda Y; Tratschin JD
    J Virol; 2009 Jan; 83(2):817-29. PubMed ID: 18987150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro-generated viral double-stranded RNA in contrast to polyinosinic:polycytidylic acid induces interferon-alpha in human plasmacytoid dendritic cells.
    Löseke S; Grage-Griebenow E; Heine H; Wagner A; Akira S; Bauer S; Bufe A
    Scand J Immunol; 2006 Apr; 63(4):264-74. PubMed ID: 16623926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding inhibition of viral proteins on type I IFN signaling pathways with modeling and optimization.
    Zou X; Xiang X; Chen Y; Peng T; Luo X; Pan Z
    J Theor Biol; 2010 Aug; 265(4):691-703. PubMed ID: 20553733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro).
    Ruggli N; Tratschin JD; Schweizer M; McCullough KC; Hofmann MA; Summerfield A
    J Virol; 2003 Jul; 77(13):7645-54. PubMed ID: 12805464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro.
    La Rocca SA; Herbert RJ; Crooke H; Drew TW; Wileman TE; Powell PP
    J Virol; 2005 Jun; 79(11):7239-47. PubMed ID: 15890962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N(pro) of classical swine fever virus prevents type I interferon-mediated priming of conventional dendritic cells for enhanced interferon-α response.
    Hüsser L; Ruggli N; Summerfield A
    J Interferon Cytokine Res; 2012 May; 32(5):221-9. PubMed ID: 22313263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation.
    Bauhofer O; Summerfield A; Sakoda Y; Tratschin JD; Hofmann MA; Ruggli N
    J Virol; 2007 Apr; 81(7):3087-96. PubMed ID: 17215286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis.
    Schweizer M; Peterhans E
    J Virol; 2001 May; 75(10):4692-8. PubMed ID: 11312340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice.
    Liu WJ; Wang XJ; Clark DC; Lobigs M; Hall RA; Khromykh AA
    J Virol; 2006 Mar; 80(5):2396-404. PubMed ID: 16474146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunogenic and replicative properties of classical swine fever virus replicon particles modified to induce IFN-α/β and carry foreign genes.
    Suter R; Summerfield A; Thomann-Harwood LJ; McCullough KC; Tratschin JD; Ruggli N
    Vaccine; 2011 Feb; 29(7):1491-503. PubMed ID: 21184857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two ways to induce innate immune responses in human PBMCs: paracrine stimulation of IFN-alpha responses by viral protein or dsRNA.
    Fournier P; Zeng J; Schirrmacher V
    Int J Oncol; 2003 Sep; 23(3):673-80. PubMed ID: 12888903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of adaptive mutations in Kunjin virus replicon RNA reveals a novel role for the flavivirus nonstructural protein NS2A in inhibition of beta interferon promoter-driven transcription.
    Liu WJ; Chen HB; Wang XJ; Huang H; Khromykh AA
    J Virol; 2004 Nov; 78(22):12225-35. PubMed ID: 15507609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classical swine fever virus induces tumor necrosis factor-alpha and lymphocyte apoptosis.
    Choi C; Hwang KK; Chae C
    Arch Virol; 2004 May; 149(5):875-89. PubMed ID: 15098104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the role of RIG-I, MDA-5 and TLR3 in sensing RNA viruses in porcine epithelial cells using lentivirus-driven RNA interference.
    Hüsser L; Alves MP; Ruggli N; Summerfield A
    Virus Res; 2011 Jul; 159(1):9-16. PubMed ID: 21539869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss ability to produce IFN-alpha in response to HIV-1 as monocytes differentiate into macrophages. Induction through a mechanism independent of double-stranded RNA.
    Francis ML; Fan XS; Meltzer MS
    J Immunol; 1996 Apr; 156(7):2481-7. PubMed ID: 8786308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-stranded RNA induces pancreatic beta-cell apoptosis by activation of the toll-like receptor 3 and interferon regulatory factor 3 pathways.
    Dogusan Z; García M; Flamez D; Alexopoulou L; Goldman M; Gysemans C; Mathieu C; Libert C; Eizirik DL; Rasschaert J
    Diabetes; 2008 May; 57(5):1236-45. PubMed ID: 18223009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.