BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16043213)

  • 1. Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes.
    Youm JB; Han J; Kim N; Zhang YH; Kim E; Joo H; Hun Leem C; Joon Kim S; Cha KA; Earm YE
    Prog Biophys Mol Biol; 2006; 90(1-3):186-206. PubMed ID: 16043213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels.
    Zabel M; Koller BS; Sachs F; Franz MR
    Cardiovasc Res; 1996 Jul; 32(1):120-30. PubMed ID: 8776409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of stretch-activated ion currents in isolated atrial myocytes from human hearts.
    Kamkin A; Kiseleva I; Wagner KD; Bohm J; Theres H; Günther J; Scholz H
    Pflugers Arch; 2003 Jun; 446(3):339-46. PubMed ID: 12799902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential loss of EC coupling gradation at positive membrane potentials in rat ventricular myocytes.
    Fan JS; Palade P
    Pflugers Arch; 2002 Aug; 444(5):654-62. PubMed ID: 12194019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes: role of increased troponin C affinity and stretch-activated ion channels.
    Tavi P; Han C; Weckström M
    Circ Res; 1998 Nov; 83(11):1165-77. PubMed ID: 9831710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane potential of rat ventricular myocytes responds to axial stretch in phase, amplitude and speed-dependent manners.
    Nishimura S; Kawai Y; Nakajima T; Hosoya Y; Fujita H; Katoh M; Yamashita H; Nagai R; Sugiura S
    Cardiovasc Res; 2006 Dec; 72(3):403-11. PubMed ID: 17055467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodality of Ca2+ signaling in rat atrial myocytes.
    Morad M; Javaheri A; Risius T; Belmonte S
    Ann N Y Acad Sci; 2005 Jun; 1047():112-21. PubMed ID: 16093489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in guinea pig ventricular myocytes: experiments and models.
    Iribe G; Kohl P
    Prog Biophys Mol Biol; 2008; 97(2-3):298-311. PubMed ID: 18395247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of single-ventricular myocytes to dynamic axial stretching.
    Nishimura S; Seo K; Nagasaki M; Hosoya Y; Yamashita H; Fujita H; Nagai R; Sugiura S
    Prog Biophys Mol Biol; 2008; 97(2-3):282-97. PubMed ID: 18471867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical simulations of the effects of altered AMP-kinase activity on I and the action potential in rat ventricle.
    Bazzazi H; Clark RB; Giles WR
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S162-S168. PubMed ID: 16686674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of phloretin and phloridzin on Ca2+ handling, the action potential, and ion currents in rat ventricular myocytes.
    Olson ML; Kargacin ME; Ward CA; Kargacin GJ
    J Pharmacol Exp Ther; 2007 Jun; 321(3):921-9. PubMed ID: 17377061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the mechanosensitivity of a BK channel by changing the linker length.
    Zhao H; Sokabe M
    Cell Res; 2008 Aug; 18(8):871-8. PubMed ID: 18663377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure.
    Yeh YH; Wakili R; Qi XY; Chartier D; Boknik P; Kääb S; Ravens U; Coutu P; Dobrev D; Nattel S
    Circ Arrhythm Electrophysiol; 2008 Jun; 1(2):93-102. PubMed ID: 19808399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Na+/Ca2+ exchange blocker SEA0400 fails to enhance cytosolic Ca2+ transient and contractility in canine ventricular cardiomyocytes.
    Birinyi P; Tóth A; Jóna I; Acsai K; Almássy J; Nagy N; Prorok J; Gherasim I; Papp Z; Hertelendi Z; Szentandrássy N; Bányász T; Fülöp F; Papp JG; Varró A; Nánási PP; Magyar J
    Cardiovasc Res; 2008 Jun; 78(3):476-84. PubMed ID: 18252759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels.
    Dyachenko V; Husse B; Rueckschloss U; Isenberg G
    Cell Calcium; 2009 Jan; 45(1):38-54. PubMed ID: 18635261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart.
    Kelly D; Mackenzie L; Hunter P; Smaill B; Saint DA
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):642-8. PubMed ID: 16789934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptomycin and intracellular calcium modulate the response of single guinea-pig ventricular myocytes to axial stretch.
    Belus A; White E
    J Physiol; 2003 Jan; 546(Pt 2):501-9. PubMed ID: 12527736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretch-activated and background non-selective cation channels in rat atrial myocytes.
    Zhang YH; Youm JB; Sung HK; Lee SH; Ryu SY; Ho WK; Earm YE
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):607-19. PubMed ID: 10718741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac systems biology and parameter sensitivity analysis: intracellular Ca2+ regulatory mechanisms in mouse ventricular myocytes.
    Shin SY; Choo SM; Woo SH; Cho KH
    Adv Biochem Eng Biotechnol; 2008; 110():25-45. PubMed ID: 18437298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.