These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 16043222)
1. Complexation of labile aluminium species by chelating resins Iontosorb--a new method for Al environmental risk assessment. Matús P; Kubová J J Inorg Biochem; 2005 Sep; 99(9):1769-78. PubMed ID: 16043222 [TBL] [Abstract][Full Text] [Related]
2. Complexation efficiency of differently fixed 8-hydroxyquinoline and salicylic acid ligand groups for labile aluminium species determination in soils--comparison of two methods. Matús P; Kubová J Anal Chim Acta; 2006 Jul; 573-574():474-81. PubMed ID: 17723563 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of separation and determination of phytoavailable and phytotoxic aluminium species fractions in soil, sediment and water samples by five different methods. Matús P J Inorg Biochem; 2007 Sep; 101(9):1214-23. PubMed ID: 17692382 [TBL] [Abstract][Full Text] [Related]
4. Aluminium determination in environmental samples by graphite furnace atomic absorption spectrometry after solid phase extraction on Amberlite XAD-1180/pyrocatechol violet chelating resin. Narin I; Tuzen M; Soylak M Talanta; 2004 May; 63(2):411-8. PubMed ID: 18969448 [TBL] [Abstract][Full Text] [Related]
5. Free aluminium extraction from various reference materials and acid soils with relation to plant availability. Matús P; Kubová J; Bujdos M; Medved' J Talanta; 2006 Dec; 70(5):996-1005. PubMed ID: 18970873 [TBL] [Abstract][Full Text] [Related]
6. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. Saygi KO; Tuzen M; Soylak M; Elci L J Hazard Mater; 2008 May; 153(3):1009-14. PubMed ID: 17951001 [TBL] [Abstract][Full Text] [Related]
7. A new approach for estimating the labile aluminium fraction in soil solutions, through batch experiments, using cationic (Amberlite IR 120) or non ionic (Amberlite XAD 2) resins. Gauthier C; Buzier R; Ayele J Environ Technol; 2003 Nov; 24(11):1377-87. PubMed ID: 14733391 [TBL] [Abstract][Full Text] [Related]
8. Microemulsion extraction separation and determination of aluminium species by spectrofluorimetry. Lu J; Tian J; Guo N; Wang Y; Pan Y J Hazard Mater; 2011 Jan; 185(2-3):1107-14. PubMed ID: 21036474 [TBL] [Abstract][Full Text] [Related]
9. ET-AAS determination of aluminium in dialysis concentrates after continuous flow solvent extraction. Komárek J; Cervenka R; Růzicka T; Kubán V J Pharm Biomed Anal; 2007 Nov; 45(3):504-9. PubMed ID: 17897803 [TBL] [Abstract][Full Text] [Related]
10. Which aluminium fractionation method will give true inorganic monomeric Al results in fresh waters (not including colloidal Al)? Andrén CM; Rydin E J Environ Monit; 2009 Sep; 11(9):1639-46. PubMed ID: 19724834 [TBL] [Abstract][Full Text] [Related]
11. Novel solid phase extraction procedure for gold(III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination. Tuzen M; Saygi KO; Soylak M J Hazard Mater; 2008 Aug; 156(1-3):591-5. PubMed ID: 18242843 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents. Cavaco SA; Fernandes S; Augusto CM; Quina MJ; Gando-Ferreira LM J Hazard Mater; 2009 Sep; 169(1-3):516-23. PubMed ID: 19406569 [TBL] [Abstract][Full Text] [Related]
13. Azocalix[4]pyrrole Amberlite XAD-2: new polymeric chelating resins for the extraction, preconcentration and sequential separation of Cu(II), Zn(II) and Cd(II) in natural water samples. Jain VK; Mandalia HC; Gupte HS; Vyas DJ Talanta; 2009 Oct; 79(5):1331-40. PubMed ID: 19635367 [TBL] [Abstract][Full Text] [Related]
14. Sorption and complexation of Eu(III) on alumina: effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study. Wang X; Xu D; Chen L; Tan X; Zhou X; Ren A; Chen Ch Appl Radiat Isot; 2006 Apr; 64(4):414-21. PubMed ID: 16290942 [TBL] [Abstract][Full Text] [Related]
15. Chemical partitioning of aluminium in rocks, soils, and sediments acidified by mining activity. Matús P; Kubová J; Bujdos M; Stresko V; Medved J Anal Bioanal Chem; 2004 May; 379(1):96-103. PubMed ID: 15024545 [TBL] [Abstract][Full Text] [Related]
16. Aluminium speciation in natural water by sorption on a complexing resin. Alberti G; D'Agostino G; Palazzo G; Biesuz R; Pesavento M J Inorg Biochem; 2005 Sep; 99(9):1779-87. PubMed ID: 16055193 [TBL] [Abstract][Full Text] [Related]
17. Development of a new analytical method for online simultaneous qualitative determination of aluminium (free aluminium ion, aluminium-fluoride complexes) by HPLC-FAAS. Zioła-Frankowska A; Frankowski M; Siepak J Talanta; 2009 Apr; 78(2):623-30. PubMed ID: 19203635 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of a novel chelating resin and its use for selective separation and preconcentration of some trace metals in water samples. Tokalioğlu S; Yilmaz V; Kartal S; Delibaş A; Soykan C J Hazard Mater; 2009 Sep; 169(1-3):593-8. PubMed ID: 19406573 [TBL] [Abstract][Full Text] [Related]
19. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80. Pehlivan E; Altun T J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738 [TBL] [Abstract][Full Text] [Related]
20. The sensitive and selective determination of aluminium by spectrofluorimetric detection after complexation with N-o-vanillidine-2-amino-p-cresol. Kara D; Fisher A; Hill SJ J Environ Monit; 2007 Sep; 9(9):994-1000. PubMed ID: 17726561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]