These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16043512)

  • 1. Identification of FIP200 interaction with the TSC1-TSC2 complex and its role in regulation of cell size control.
    Gan B; Melkoumian ZK; Wu X; Guan KL; Guan JL
    J Cell Biol; 2005 Aug; 170(3):379-89. PubMed ID: 16043512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of focal adhesion kinase with tuberous sclerosis complex 2 in the regulation of s6 kinase activation and cell growth.
    Gan B; Yoo Y; Guan JL
    J Biol Chem; 2006 Dec; 281(49):37321-9. PubMed ID: 17043358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 14-3-3beta binds to and negatively regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product, tuberin.
    Shumway SD; Li Y; Xiong Y
    J Biol Chem; 2003 Jan; 278(4):2089-92. PubMed ID: 12468542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway.
    Crossland H; Kazi AA; Lang CH; Timmons JA; Pierre P; Wilkinson DJ; Smith K; Szewczyk NJ; Atherton PJ
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(2):E183-93. PubMed ID: 23695213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent.
    Jaeschke A; Hartkamp J; Saitoh M; Roworth W; Nobukuni T; Hodges A; Sampson J; Thomas G; Lamb R
    J Cell Biol; 2002 Oct; 159(2):217-24. PubMed ID: 12403809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role of T-loop and H-motif phosphorylation in the regulation of S6 kinase 1 by the tuberous sclerosis complex.
    Shah OJ; Hunter T
    J Biol Chem; 2004 May; 279(20):20816-23. PubMed ID: 14993219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of FIP200 in cardiac and liver development and its regulation of TNFalpha and TSC-mTOR signaling pathways.
    Gan B; Peng X; Nagy T; Alcaraz A; Gu H; Guan JL
    J Cell Biol; 2006 Oct; 175(1):121-33. PubMed ID: 17015619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of focal adhesion kinase by a novel protein inhibitor FIP200.
    Abbi S; Ueda H; Zheng C; Cooper LA; Zhao J; Christopher R; Guan JL
    Mol Biol Cell; 2002 Sep; 13(9):3178-91. PubMed ID: 12221124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TSC2 modulates actin cytoskeleton and focal adhesion through TSC1-binding domain and the Rac1 GTPase.
    Goncharova E; Goncharov D; Noonan D; Krymskaya VP
    J Cell Biol; 2004 Dec; 167(6):1171-82. PubMed ID: 15611338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation.
    Chan JA; Zhang H; Roberts PS; Jozwiak S; Wieslawa G; Lewin-Kowalik J; Kotulska K; Kwiatkowski DJ
    J Neuropathol Exp Neurol; 2004 Dec; 63(12):1236-42. PubMed ID: 15624760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis.
    Kwiatkowski DJ
    Cancer Biol Ther; 2003; 2(5):471-6. PubMed ID: 14614311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of TSC2 by 14-3-3 binding.
    Li Y; Inoki K; Yeung R; Guan KL
    J Biol Chem; 2002 Nov; 277(47):44593-6. PubMed ID: 12364343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways.
    Marin TM; Clemente CF; Santos AM; Picardi PK; Pascoal VD; Lopes-Cendes I; Saad MJ; Franchini KG
    Circ Res; 2008 Oct; 103(8):813-24. PubMed ID: 18757826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberrant beta-catenin signaling in tuberous sclerosis.
    Mak BC; Kenerson HL; Aicher LD; Barnes EA; Yeung RS
    Am J Pathol; 2005 Jul; 167(1):107-16. PubMed ID: 15972957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of TBC7 having TBC domain as a novel binding protein to TSC1-TSC2 complex.
    Nakashima A; Yoshino K; Miyamoto T; Eguchi S; Oshiro N; Kikkawa U; Yonezawa K
    Biochem Biophys Res Commun; 2007 Sep; 361(1):218-23. PubMed ID: 17658474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the tuberous sclerosis complex proteins in brain lesions.
    Han S; Santos TM; Puga A; Roy J; Thiele EA; McCollin M; Stemmer-Rachamimov A; Ramesh V
    Cancer Res; 2004 Feb; 64(3):812-6. PubMed ID: 14871804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human papillomavirus 16 E6 oncoprotein interferences with insulin signaling pathway by binding to tuberin.
    Lu Z; Hu X; Li Y; Zheng L; Zhou Y; Jiang H; Ning T; Basang Z; Zhang C; Ke Y
    J Biol Chem; 2004 Aug; 279(34):35664-70. PubMed ID: 15175323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of tuberous sclerosis complex (TSC) function by 14-3-3 proteins.
    Nellist M; Goedbloed MA; Halley DJ
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):587-91. PubMed ID: 12773161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.
    Brugarolas J; Lei K; Hurley RL; Manning BD; Reiling JH; Hafen E; Witters LA; Ellisen LW; Kaelin WG
    Genes Dev; 2004 Dec; 18(23):2893-904. PubMed ID: 15545625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mTOR/S6K signalling pathway: the role of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb.
    Nobukini T; Thomas G
    Novartis Found Symp; 2004; 262():148-54; discussion 154-9, 265-8. PubMed ID: 15562827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.