These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16043588)

  • 1. A modified Hill muscle model that predicts muscle power output and efficiency during sinusoidal length changes.
    Lichtwark GA; Wilson AM
    J Exp Biol; 2005 Aug; 208(Pt 15):2831-43. PubMed ID: 16043588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of series elasticity and activation conditions on muscle power output and efficiency.
    Lichtwark GA; Wilson AM
    J Exp Biol; 2005 Aug; 208(Pt 15):2845-53. PubMed ID: 16043589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal dependence of contractile properties of the aerobic locomotor muscle in the leopard shark and shortfin mako shark.
    Donley JM; Shadwick RE; Sepulveda CA; Syme DA
    J Exp Biol; 2007 Apr; 210(Pt 7):1194-203. PubMed ID: 17371918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of tendon compliance on muscle power output and efficiency during cyclic contractions.
    Lichtwark GA; Barclay CJ
    J Exp Biol; 2010 Mar; 213(5):707-14. PubMed ID: 20154185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of strain and activation on the locomotor function of rat ankle extensor muscles.
    Hodson-Tole EF; Wakeling JM
    J Exp Biol; 2010 Jan; 213(2):318-30. PubMed ID: 20038667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro estimates of power output by epaxial muscle during feeding in largemouth bass.
    Coughlin DJ; Carroll AM
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Dec; 145(4):533-9. PubMed ID: 17029993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetic aspects of skeletal muscle contraction: implications of fiber types.
    Rall JA
    Exerc Sport Sci Rev; 1985; 13():33-74. PubMed ID: 3159582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent power output and skeletal muscle design.
    Medler S; Hulme K
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Mar; 152(3):407-17. PubMed ID: 19101645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the speed of shortening affect steady-state force depression in cat soleus muscle?
    Leonard TR; Herzog W
    J Biomech; 2005 Nov; 38(11):2190-7. PubMed ID: 16154405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanics of mouse skeletal muscle when shortening during relaxation.
    Barclay CJ; Lichtwark GA
    J Biomech; 2007; 40(14):3121-9. PubMed ID: 17499255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion.
    Gillis GB; Flynn JP; McGuigan P; Biewener AA
    J Exp Biol; 2005 Dec; 208(Pt 24):4599-611. PubMed ID: 16326942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Length-dependent [Ca2+] sensitivity adds stiffness to muscle.
    Kistemaker DA; Van Soest AK; Bobbert MF
    J Biomech; 2005 Sep; 38(9):1816-21. PubMed ID: 16023468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of asymmetric length trajectories on the initial mechanical efficiency of mouse soleus muscles.
    Holt NC; Askew GN
    J Exp Biol; 2012 Jan; 215(Pt 2):324-30. PubMed ID: 22189776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanical power output of the pectoralis muscle of cockatiel (Nymphicus hollandicus): the in vivo muscle length trajectory and activity patterns and their implications for power modulation.
    Morris CR; Askew GN
    J Exp Biol; 2010 Aug; 213(Pt 16):2770-80. PubMed ID: 20675547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contractile properties of the pigeon supracoracoideus during different modes of flight.
    Tobalske BW; Biewener AA
    J Exp Biol; 2008 Jan; 211(Pt 2):170-9. PubMed ID: 18165244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A force-similarity model of the activated muscle is able to predict primary locomotor functions.
    Kokshenev VB
    J Biomech; 2008; 41(4):912-5. PubMed ID: 18154975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring crossbridge properties from skeletal muscle energetics.
    Barclay CJ; Woledge RC; Curtin NA
    Prog Biophys Mol Biol; 2010 Jan; 102(1):53-71. PubMed ID: 19836411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power developed by motor units of the peroneus tertius muscle of the cat.
    Petit J; Giroux-Metges MA; Gioux M
    J Neurophysiol; 2003 Nov; 90(5):3095-104. PubMed ID: 14615427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Models of metabolic utilization predict limiting conditions for sustained power from conditioned skeletal muscle.
    Gustafson KJ; Marinache SM; Egrie GD; Reichenbach SH
    Ann Biomed Eng; 2006 May; 34(5):790-8. PubMed ID: 16598656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. History dependence of force production in skeletal muscle: a proposal for mechanisms.
    Herzog W
    J Electromyogr Kinesiol; 1998 Apr; 8(2):111-7. PubMed ID: 9680951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.