These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 16043873)
1. Contrast response properties of magnocellular and parvocellular pathways in retinitis pigmentosa assessed by the visual evoked potential. Alexander KR; Rajagopalan AS; Seiple W; Zemon VM; Fishman GA Invest Ophthalmol Vis Sci; 2005 Aug; 46(8):2967-73. PubMed ID: 16043873 [TBL] [Abstract][Full Text] [Related]
2. Contrast sensitivity deficits in inferred magnocellular and parvocellular pathways in retinitis pigmentosa. Alexander KR; Barnes CS; Fishman GA; Pokorny J; Smith VC Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4510-9. PubMed ID: 15557462 [TBL] [Abstract][Full Text] [Related]
3. Deficits in temporal integration for contrast processing in retinitis pigmentosa. Alexander KR; Barnes CS; Fishman GA Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3163-9. PubMed ID: 12824267 [TBL] [Abstract][Full Text] [Related]
4. Contrast discrimination deficits in retinitis pigmentosa are greater for stimuli that favor the magnocellular pathway. Alexander KR; Pokorny J; Smith VC; Fishman GA; Barnes CS Vision Res; 2001 Mar; 41(5):671-83. PubMed ID: 11226510 [TBL] [Abstract][Full Text] [Related]
5. Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Porciatti V; Sartucci F Brain; 1996 Jun; 119 ( Pt 3)():723-40. PubMed ID: 8673486 [TBL] [Abstract][Full Text] [Related]
6. Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Greenstein VC; Seliger S; Zemon V; Ritch R Vision Res; 1998 Jun; 38(12):1901-11. PubMed ID: 9797966 [TBL] [Abstract][Full Text] [Related]
7. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways. Robson AG; Kulikowski JJ Vis Neurosci; 2012 Nov; 29(6):301-13. PubMed ID: 23206417 [TBL] [Abstract][Full Text] [Related]
8. Visual evoked potentials and magnocellular and parvocellular segregation. Rudvin I; Valberg A; Kilavik BE Vis Neurosci; 2000; 17(4):579-90. PubMed ID: 11016577 [TBL] [Abstract][Full Text] [Related]
9. Dysfunction of early-stage visual processing in schizophrenia. Butler PD; Schechter I; Zemon V; Schwartz SG; Greenstein VC; Gordon J; Schroeder CE; Javitt DC Am J Psychiatry; 2001 Jul; 158(7):1126-33. PubMed ID: 11431235 [TBL] [Abstract][Full Text] [Related]
10. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component. Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997 [TBL] [Abstract][Full Text] [Related]
11. The effects of luminance and chromatic background flicker on the human visual evoked potential. Brigell M; Strafella A; Parmeggiani L; DeMarco PJ; Celesia GG Vis Neurosci; 1996; 13(2):265-75. PubMed ID: 8737277 [TBL] [Abstract][Full Text] [Related]
12. Development of the temporal properties of visual evoked potentials to luminance and colour contrast in infants. Morrone MC; Fiorentini A; Burr DC Vision Res; 1996 Oct; 36(19):3141-55. PubMed ID: 8917775 [TBL] [Abstract][Full Text] [Related]
13. Dysfunction of the magnocellular stream in Alzheimer's disease evaluated by pattern electroretinograms and visual evoked potentials. Sartucci F; Borghetti D; Bocci T; Murri L; Orsini P; Porciatti V; Origlia N; Domenici L Brain Res Bull; 2010 May; 82(3-4):169-76. PubMed ID: 20385208 [TBL] [Abstract][Full Text] [Related]
14. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways. Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403 [TBL] [Abstract][Full Text] [Related]
15. Possible contributions of magnocellular- and parvocellular-pathway cells to transient VEPs. Valberg A; Rudvin I Vis Neurosci; 1997; 14(1):1-11. PubMed ID: 9057263 [TBL] [Abstract][Full Text] [Related]
16. Flicker adaptation desensitizes the magnocellular but not the parvocellular pathway. Zhuang X; Pokorny J; Cao D Invest Ophthalmol Vis Sci; 2015 May; 56(5):2901-8. PubMed ID: 26029886 [TBL] [Abstract][Full Text] [Related]
17. A Novel Motion-on-Color Paradigm for Isolating Magnocellular Pathway Function in Preperimetric Glaucoma. Wen W; Zhang P; Liu T; Zhang T; Gao J; Sun X; He S Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4439-46. PubMed ID: 26193920 [TBL] [Abstract][Full Text] [Related]
18. Defective chromatic and achromatic visual pathways in developmental dyslexia: Cues for an integrated intervention programme. Bonfiglio L; Bocci T; Minichilli F; Crecchi A; Barloscio D; Spina DM; Rossi B; Sartucci F Restor Neurol Neurosci; 2017; 35(1):11-24. PubMed ID: 27858722 [TBL] [Abstract][Full Text] [Related]
19. Visual-evoked response, pattern electroretinogram, and psychophysical magnocellular thresholds in glaucoma, optic atrophy, and dyslexia. Vaegan ; Hollows FC Optom Vis Sci; 2006 Jul; 83(7):486-98. PubMed ID: 16840873 [TBL] [Abstract][Full Text] [Related]
20. Spatial luminance contrast sensitivity measured with transient VEP: comparison with psychophysics and evidence of multiple mechanisms. Souza GS; Gomes BD; Saito CA; da Silva Filho M; Silveira LC Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3396-404. PubMed ID: 17591914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]