BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 16044317)

  • 1. Ultrastructural evidence of piecemeal degranulation in large dense-core vesicles of brain neurons.
    Crivellato E; Nico B; Ribatti D
    Anat Embryol (Berl); 2005 Aug; 210(1):25-34. PubMed ID: 16044317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dense-core granules in neuroendocrine cells and neurons release their secretory constituents by piecemeal degranulation (review).
    Crivellato E; Nico B; Bertelli E; Nussdorfer GG; Ribatti D
    Int J Mol Med; 2006 Dec; 18(6):1037-46. PubMed ID: 17089006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural morphology of adrenal chromaffin cells indicative of a process of piecemeal degranulation.
    Crivellato E; Nico B; Perissin L; Ribatti D
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Feb; 270(2):103-8. PubMed ID: 12524685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Granule changes of human and murine endocrine cells in the gastrointestinal epithelia are characteristic of piecemeal degranulation.
    Crivellato E; Ribatti D; Mallardi F; Beltrami CA
    Anat Rec; 2002 Dec; 268(4):353-9. PubMed ID: 12420282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on electron microscopy and neurotransmitter systems.
    Torrealba F; Carrasco MA
    Brain Res Brain Res Rev; 2004 Dec; 47(1-3):5-17. PubMed ID: 15572159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromaffin cells in the amphibian urodele Triturus carnifex show ultrastructural features indicative of a vesicle-mediated mode of cell degranulation.
    Crivellato E; De Falco M; Capaldo A; Laforgia V; Ribatti D; De Luca A
    Anat Rec (Hoboken); 2009 Jan; 292(1):73-8. PubMed ID: 18727112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromaffin cells in the adrenal homolog of Aphanius fasciatus (teleost fish) express piecemeal degranulation in response to osmotic stress: a hint for a conservative evolutionary process.
    Crivellato E; Civinini A; Gallo VP
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Oct; 288(10):1077-86. PubMed ID: 16964607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frequency stimuli preferentially release large dense-core vesicles located in the proximity of nonspecialized zones of the presynaptic membrane in sympathetic ganglia.
    Cifuentes F; Montoya M; Morales MA
    Dev Neurobiol; 2008 Mar; 68(4):446-56. PubMed ID: 18172889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SV2 modulates the size of the readily releasable pool of secretory vesicles.
    Xu T; Bajjalieh SM
    Nat Cell Biol; 2001 Aug; 3(8):691-8. PubMed ID: 11483953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How neurosecretory vesicles release their cargo.
    Scalettar BA
    Neuroscientist; 2006 Apr; 12(2):164-76. PubMed ID: 16514013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PKA activation bypasses the requirement for UNC-31 in the docking of dense core vesicles from C. elegans neurons.
    Zhou KM; Dong YM; Ge Q; Zhu D; Zhou W; Lin XG; Liang T; Wu ZX; Xu T
    Neuron; 2007 Nov; 56(4):657-69. PubMed ID: 18031683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromaffin granules in the rat adrenal medulla release their secretory content in a particulate fashion.
    Crivellato E; Belloni A; Nico B; Nussdorfer GG; Ribatti D
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Mar; 277(1):204-8. PubMed ID: 14983514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals.
    Klyachko VA; Jackson MB
    Nature; 2002 Jul; 418(6893):89-92. PubMed ID: 12097912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of exocytosis in neurons and neuroendocrine cells.
    An S; Zenisek D
    Curr Opin Neurobiol; 2004 Oct; 14(5):522-30. PubMed ID: 15464884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic vesicle dynamics in the mossy fiber-CA3 presynaptic terminals of mouse hippocampus.
    Suyama S; Hikima T; Sakagami H; Ishizuka T; Yawo H
    Neurosci Res; 2007 Dec; 59(4):481-90. PubMed ID: 17933408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells.
    MacDonald PE; Braun M; Galvanovskis J; Rorsman P
    Cell Metab; 2006 Oct; 4(4):283-90. PubMed ID: 17011501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAPS1 regulates catecholamine loading of large dense-core vesicles.
    Speidel D; Bruederle CE; Enk C; Voets T; Varoqueaux F; Reim K; Becherer U; Fornai F; Ruggieri S; Holighaus Y; Weihe E; Bruns D; Brose N; Rettig J
    Neuron; 2005 Apr; 46(1):75-88. PubMed ID: 15820695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis.
    Park Y; Kim KT
    Cell Signal; 2009 Oct; 21(10):1465-70. PubMed ID: 19249357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation of presynaptic delta opioid receptors in the ventrolateral periaqueductal gray after swim stress.
    Commons KG
    J Comp Neurol; 2003 Sep; 464(2):197-207. PubMed ID: 12898612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons.
    Fernando RN; Luff SE; Albiston AL; Chai SY
    J Neurochem; 2007 Aug; 102(3):967-76. PubMed ID: 17504262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.